Browse > Article
http://dx.doi.org/10.3365/KJMM.2011.49.1.009

Effects of Cryogenic Treatment on Residual Stress and Tensile Properties for 6061 Al Alloy  

Park, Kijung (Dept. of Materials Science and Engineering, Pusan National University)
Ko, Dea Hoon (Dept. of Mechanical Engineering, Pusan National University)
Kim, Byung Min (Dept. of Mechanical Engineering, Pusan National University)
Lim, Hak Jin (PoongSan Corporation)
Lee, Jung Min (PoongSan Corporation)
Cho, Young-Rae (Dept. of Materials Science and Engineering, Pusan National University)
Publication Information
Korean Journal of Metals and Materials / v.49, no.1, 2011 , pp. 9-16 More about this Journal
Abstract
To develop a 6061 aluminum alloy with low residual stress and high tensile strength, a cryogenic treatment process was investigated. Compared to the conventional heat treatment process for precipitation hardening with artificial aging, the cryogenic treatment process has two additional steps. The first step is cryogenic quenching of the sample into liquid nitrogen, the second step is up-hill quenching of the sample into boiling water. The residual stress for the sample was measured by the $sin^2{\psi}$ method with X-ray diffraction. The 6061 aluminum alloy sample showed 67% relief in stress at the cryogenic treatment process with artificial aging at $175^{\circ}C$. From this study, it was found that the optimum cryogenic treatment process for a sample with low residual stress and high tensile strength is relatively low cooling speed in the cryogenic quenching step and a very high heating speed in the up-hill quenching step.
Keywords
alloys; aging; residual stress; tensile test; cryogenic treatment;
Citations & Related Records

Times Cited By SCOPUS : 1
연도 인용수 순위
  • Reference
1 J. K. Kim, H. G. Jeong, S. I. Hong, Y. S. Kim, and W. J. Kim, Scripta Mater. 45, 901 (2001).   DOI   ScienceOn
2 O. R. Myhr, O. Grong, and S. J. Anderson, Acta Mater. 49, 65 (2001).   DOI   ScienceOn
3 L. J. Chen, C. Y. Ma, G. M. Stoica, P. K. Liaw, C. Xu, and T. G. Langdon, Mater. Sci. Eng. A 410, 472 (2005).
4 D. G. Lee, J. H. Lee, J. H. Kim, N. K. Park, Y. Lee, and H. S. Jeong, J. Kor. Inst. Met. & Mater. 46, 449 (2008).
5 H. S. Kim and D. N. Lee, J. Kor. Inst. Met. & Mater. 16, 233 (1978).
6 P. Juijerm and I. Altenberger, Acta Mater. 55, 1111 (2006).
7 G. P. Dolan and J. S. Robinson, J. Mater. Process. Technol. 153-154, 346 (2004).   DOI
8 P. Juijerm and I. Altenberger, Mater. Sci. Eng. A 452, 475 (2007).
9 K. E. Lulay, K. Khan, and D. Chaaya, J. Mater. Eng. Perform. 11, 479 (2002).   DOI   ScienceOn
10 W. M. Kays and M.E. Crawford, Convection heat and mass transfer, 2nd ed., p.870-874, MaGraw-Hill. New York (1980).
11 W. Tang, L. Deng, K. Xu, and J. Lu, Surf. Coat. Technol. 201, 5944 (2007).   DOI   ScienceOn
12 P. S. Prevey, American Society for Metals 96, 47 (1991).
13 K. C. Ho, J. Lin, and T. A. Dean, J. Mater. Process. Technol. 153-154, 122 (2004).   DOI
14 L. Zhen and S. B. Kang, Mater. Lett. 37, 349 (1998).   DOI   ScienceOn
15 H. N. Hill, R. S. Barker, and L. A. Willey, American Society for Metals 52, 657 (1960).
16 S. K. Panigrahi, R. Jayaganthan, and V. Pancholi, Materials and Design 30, 1894 (2009).   DOI   ScienceOn
17 R. Guemini, A. Boubertakh, and G. W. Lorimer, J. Alloy Compd. 486, 451 (2009).   DOI   ScienceOn