• Title/Summary/Keyword: high speed mode

Search Result 1,015, Processing Time 0.028 seconds

A Design of High-speed Phase Calculator for 3D Depth Image Extraction from TOF Sensor Data (TOF 센서용 3차원 Depth Image 추출을 위한 고속 위상 연산기 설계)

  • Koo, Jung-Youn;Shin, Kyung-Wook
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.17 no.2
    • /
    • pp.355-362
    • /
    • 2013
  • A hardware implementation of phase calculator for extracting 3D depth image from TOF(Time-Of-Flight) sensor is described. The designed phase calculator, which adopts a pipelined architecture to improve throughput, performs arctangent operation using vectoring mode of CORDIC algorithm. Fixed-point MATLAB modeling and simulations are carried out to determine the optimized bit-widths and number of iteration. The designed phase calculator is verified by FPGA-in-the-loop verification using MATLAB/Simulink, and synthesized with a TSMC 0.18-${\mu}m$ CMOS cell library. It has 16,000 gates and the estimated throughput is about 9.6 Gbps at 200Mhz@1.8V.

Improvement of Surface Roughness by the Cutting Speed Control for Turning Operation (선삭에서 절삭 속도 제어를 통한 표면 거칠기 향상)

  • Choi, Jong-Hwan
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.7 no.2
    • /
    • pp.23-30
    • /
    • 2008
  • As a basic machining process, turning is a widely used machining process in which a single-point cutting tool removes material from the surface of a rotating material. A common method of evaluating machining performance is to measure the surface roughness. In a turning operation, it is important to select cutting conditions for achieving high cutting performance. As a rule, cutting conditions can be classified into feed rate, depth of cut and insert radius. While cutting process even though cutting conditions are optimized, the average roughness can be deterioration due to wear of the cutting tool edge. In this study, the aim is to maintain the average roughness even though the cutting condition is irregularly changing within the predictable range due to the working environment. First, the surface roughness model influenced by cutting conditions is constructed based on the experimental results in a turning operation, Second, applying the sliding mode control theory to the turning operation model which is composed of the surface roughness model and the motor transfer function, the surface roughness is closed to the desired value. Finally, the effectiveness of this approach is demonstrated through the computer simulation.

  • PDF

A Study on a mountain train operation (산악열차 운행에 관한 연구)

  • Son, Young-Jin;Chung, Su-Young;Lee, Jong-Seong
    • Proceedings of the KSR Conference
    • /
    • 2007.05a
    • /
    • pp.632-642
    • /
    • 2007
  • Korea, a peninsular country with distances of approximate 840 kms south-north and 1,200 kms east-west, currently has only three types of rail transport mode in operation; high-speed KTX, regional railway and urban rapid rail transit. It is very unfortunate that there exists no mountain train system across the country yet, which could be able to contribute both to the promotion of tourism and to a higher affordability of public transport means in the city. This type of rail mode system is more desiring when taking account the fact that 75% of the land topographically belongs to mountainous area. With this background in mind, among others, it is suggested that a mountain train system be laid over the scenic Bukhan Mountain in Seoul linking Gupabal station in line 3 and Ssangmun station line 4. This project would surely require an advancing review on its feasibility and approving result.

  • PDF

A study on the influence of process parameters during laser welding of sheet steels (강판의 레이저 용접시 공정변수의 영향에 관한 연구)

  • Park, Young-Soo;Lee, Yoon-Sik;Kim, Hyung-Sik;Kim, Chan
    • Laser Solutions
    • /
    • v.2 no.3
    • /
    • pp.11-18
    • /
    • 1999
  • This paper describes the weldability of carbon steel and stainless steel using 5㎾ $CO_2$ laser system with nearly multi-mode beam and a parabolic focusing mirror. In the laser welding of steels, major welding parameters are focal point, travel speed, beam power, shield gas and gap tolerance, etc.. Two kinds of gases(Ar, He) were used as a assist gas and supplied through the external nozzle. It is very important for optimum condition to remove plasma plume which absorbs laser beam and to obtain deep penetration and sound weld bead. Bead-on-plate welding tests were carried out for the experiments. Penetration data were obtained with various welding parameters and the effects of welding parameters were discussed. Butt welding tests were performed with various conditions. Only the optimum laser parameters assured good weld quality As a result of this study, We achieve the fundamental weldabilities using a high power $CO_2$ laser for carbon steel and stainless steel.

  • PDF

The influence of the Train formation on the KTX Vibration at the Tail of the Train (KTX 차량의 편성차량수가 후미 불안정 진동에 미치는 영향)

  • Kang, Bu-Byoung;Chung, Heung-Chai
    • Proceedings of the KSME Conference
    • /
    • 2003.11a
    • /
    • pp.1708-1713
    • /
    • 2003
  • The acceptance test of KTX has been performed in Korea. During the test, lateral vibration of carbody over the accepted value called swat was found. KTX has 20 car trainsed formation whose trailer cars are linked by articulate bogies. So this study is performed to see the effects of long trainsed formation on vehicle dynamics and the train stability by 20 car vehicle model. Firstly the reliable vehicle model which shows well the tendencies appeared in the tests on the high speed test line is required to find the cause of lateral vibration and the countermeasure. Vehicle model was made for the analysis with VAMPIRE. The analysis results show that secondary air spring lateral stiffness is the most significant parameter to cause carbody lateral vibration. Mode analysis results show that he least damped mode shape is similar to the vibration pattern shown in the tests that the amplitude of the motion increases along the train set and decreases in the tail part. For the case of short train formation with 7 or 10cars, sway does not happen. But in the case of longer train formation with 16 or 20 cars, sway was found.

  • PDF

Rotordynamic Analysis of Automotive Turbochargers Supported on Ball Bearings and Squeeze Film Dampers in Series: Effect of Squeeze Film Damper Design Parameters and Rotor Imbalances (볼 베어링과 스퀴즈 필름 댐퍼로 지지되는 차량용 터보차저의 회전체동역학 해석: 스퀴즈 필름 댐퍼 설계 인자와 회전체 불균형 질량의 영향)

  • Kim, Kyuman;Ryu, Keun
    • Tribology and Lubricants
    • /
    • v.34 no.1
    • /
    • pp.9-15
    • /
    • 2018
  • Modern high-performance automotive turbochargers (TCs) implement ceramic hybrid angular contact ball bearings in series with squeeze film dampers (SFDs) to enhance transient responses, thereby reducing the overall emission levels. The current study predicts the rotordynamic responses of the commercial automotive TCs (compressor wheel diameter = ~53 mm, turbine wheel diameter = ~43 mm, and shaft diameter at the bearing locations = ~7 mm) supported on ball bearings and SFDs for various design parameters of SFDs, including radial clearance, axial length, lubricant viscosity, and rotor imbalance conditions (i.e., amplitudes and phase angles) while increasing rotor speed up to 150 krpm. This study validates the predictive rotor finite element model against measurements of mass, polar and transverse moments of inertia, and free-free mode natural frequencies and mode shapes. A nonlinear rotordynamic model integrates nonlinear force coefficients of SFDs to calculate the transient responses of the TC rotor-bearing system. The predicted results show that SFD radial clearances, as well as phase angles of rotor imbalances, have the paramount effect on the dynamic responses of TC shaft motions.

Flow Analysis around Tilt-rotor Aircraft at Various Tilt Angles (틸트각 변화에 따른 틸트로터 항공기 주위의 유동해석)

  • Kim, Su-Yean;Choi, Jong-Wook
    • Journal of the Korean Society of Visualization
    • /
    • v.9 no.2
    • /
    • pp.40-47
    • /
    • 2011
  • Tilt-rotor aircraft can be used in various fields because they have the capabilities of the vertical take-off and landing and the high-speed cruise flight. In the present study, the flow analysis of a tilt-rotor aircraft is conducted at various tilt angles. The lift and drag forces of the tilt-rotor aircraft are obtained and the wakes by the rotor-blade are visualized. The result shows that the rotor-blade affects the lift force in a hovering mode and the main wing has an influence on the lift force in a cruise mode. Additional thrust is required at the tilt angle of around 40 degree due to the least lift force. The drag force is dependent on the rotor-blade at overall tilt angles. The minus drag force appears between the tilt angles of 90 degree and 55 degree. Also, the drag force is dramatically increased at the other tilt angles. The wake by rotor-blade affects the flow around the fuselage of the tilt-rotor aircraft at the tilt angles of 75 degree and 60 degree.

Converter for Switched reluctance Motor Applied Soft Switching Mode by Partial Resonant Mothod (부분공진 소프트 수위칭기법을 적용한 스윗치드 리럭턴스 모터의 구공회로)

  • Kim, J.S.;Lee, B.D.;Kim, S.D.;Jung, G.H.;Kang, U.J.;Koh, H.S.;Lee, S.H.;Lee, H.W.
    • Proceedings of the KIEE Conference
    • /
    • 1998.07f
    • /
    • pp.2103-2105
    • /
    • 1998
  • Switched Reluctance Motor is simple structure which used Accel/Decel application field because of cheap cost and High efficiency. For driving this motor, it is essential to need position sensor and driving converter. so, many topology and sensor have been studied untill now. Asymmetric Bridge Converter which has been known for the best control and efficiency is used chopping to control current of motor coil according to changing of motor speed. But this is embossed as a fault because it come to bring switching loss due to rapid switching frequency. In this paper, I applied to Soft Switching Mode by Partial Resonant Method to compensate these fault and to show the usabilityness of low switching device.

  • PDF

Dynamic stiffness based computation of response for framed machine foundations

  • Lakshmanan, N.;Gopalakrishnan, N.;Rama Rao, G.V.;Sathish kumar, K.
    • Geomechanics and Engineering
    • /
    • v.1 no.2
    • /
    • pp.121-142
    • /
    • 2009
  • The paper deals with the applications of spectral finite element method to the dynamic analysis of framed foundations supporting high speed machines. Comparative performance of approximate dynamic stiffness methods formulated using static stiffness and lumped or consistent or average mass matrices with the exact spectral finite element for a three dimensional Euler-Bernoulli beam element is presented. The convergence of response computed using mode superposition method with the appropriate dynamic stiffness method as the number of modes increase is illustrated. Frequency proportional discretisation level required for mode superposition and approximate dynamic stiffness methods is outlined. It is reiterated that the results of exact dynamic stiffness method are invariant with reference to the discretisation level. The Eigen-frequencies of the system are evaluated using William-Wittrick algorithm and Sturm number generation in the $LDL^T$ decomposition of the real part of the dynamic stiffness matrix, as they cannot be explicitly evaluated. Major's method for dynamic analysis of machine supporting structures is modified and the plane frames are replaced with springs of exact dynamic stiffness and dynamically flexible longitudinal frames. Results of the analysis are compared with exact values. The possible simplifications that could be introduced for a typical machine induced excitation on a framed structure are illustrated and the developed program is modified to account for dynamic constraint equations with a master slave degree of freedom (DOF) option.

The Service Evaluation of Connection and Transfer Facilities in the High-speed Railway Stations (고속철도역의 연계환승시설 서비스 수준 평가)

  • Han, Sung-Yoeb;Kim, Kang-Seob;Park, Min-Kyu;Kim, Si-Gon
    • Proceedings of the KSR Conference
    • /
    • 2009.05a
    • /
    • pp.761-772
    • /
    • 2009
  • The introduction of KTX (Korea Train eXpress) provided passengers with a much faster mode of transport, and KTX has become a model railway system. Express railway stations are emphasized as public transit transfer centers, but their service evaluations were not performed appropriately so far. It is possible to know the level of service by developing valuation criteria for their evaluations. The evaluation of transfer centers mainly consists of two parts; connective service with other travel m odes, and transfer service inside transfer stations. Connection is defined as the inter-connection of multi-transportation vehicles, and transfer means that a passenger changes his travel mode to another. Such connective service and transfer service are evaluated by the level of service in terms of transfer facilities, the appropriateness of station layout and the quality of information throughout the facilities. We developed the service evaluation indicators of connective facilities and referred to the indicators of transfer facilities. We examined the 7 stations in Korea that are currently in operation and standardized the methodology of the evaluation process by applying the indicators suggested in this study.

  • PDF