• Title/Summary/Keyword: high speed mode

Search Result 1,015, Processing Time 0.03 seconds

A Study on Steady-State Performance Simulation of Smart UAV Propulsion System (신개념 비행체 추진시스템의 정상상태 성능모사 기법 연구)

  • 공창덕;강명철;기자영;양수석;이창호
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.7 no.3
    • /
    • pp.38-44
    • /
    • 2003
  • In this study, a performance model of the smart UAV propulsion system with ducts, tip jets and variable main nozzle, which has flight capability of the rotary wing mode for the take-off/landing and low speed forward flight as well as the fixed wing mode for high speed forward flight, has been newly developed With the proposed model, steady-state performance analysis was performed at various flight modes such as rotary wing mode, fixed wing mode, compound ing mode and altitude as well as at flight speed conditions. In investigation of performance analysis. it was noted that the operational capability of the propulsion system was limited due to the duct losses depending on each flight mode, and the limitation with the altitude variation case had much greater than that with the flight speed variation case.

A Study on Steady-state Performance Simulation of Smart UAV Propulsion System (신개념 비행체 추진시스템의 정상상태 성능모사 기법 연구)

  • 공창덕;강명철;기자영;양수석;이창호
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2003.05a
    • /
    • pp.177-182
    • /
    • 2003
  • In this study, a performance model of the Smart UAV propulsion system with ducts, tip jets and variable main nozzle, which has flight capability of the rotary wing mode for the take-off/landing and low speed forward flight as welt as the fixed wing mode for high speed forward flight, has been newly developed. With the proposed model, steady-state performance analysis was performed at various flight modes and conditions, such as rotary wing mode, fixed wing mode, compound wing, mode altitude and flight speed. In investigation of performance analysis, it was noted that the operational capability of the propulsion system was limited due to the duct losses depending on each flight mode, and the limitation with the altitude variation case has much greater than that with the flight speed variation case.

  • PDF

On-Chip Full CMOS Current and Voltage References for High-Speed Mixed-Mode Circuits (고속 혼성모드 집적회로를 위한 온-칩 CMOS 전류 및 전압 레퍼런스 회로)

  • Cho, Young-Jae;Bae, Hyun-Hee;Jee, Yong;Lee, Seung-Hoon
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.40 no.3
    • /
    • pp.135-144
    • /
    • 2003
  • This work proposes on-chip full CMOS current and voltage references for high-speed mixed-mode circuits. The proposed current reference circuit uses a digital-domain calibration method instead of a conventional analog calibration to obtain accurate current values. The proposed voltage reference employs internal reference voltage drivers to minimize the high-frequency noise from the output stages of high-speed mixed-mode circuits. The reference voltage drivers adopt low power op amps and small- sized on-chip capacitors for low power consumption and small chip area. The proposed references are designed, laid out, and fabricated in a 0.18 um n-well CMOS process and the active chip area is 250 um x 200 um. The measured results show the reference circuits have the power supply variation of 2.59 %/V and the temperature coefficient of 48 ppm/$^{\circ}C$ E.

Analysis of Dynamic Characteristics of A High-speed Milling Spindle with a Drawbar and a Built-in Motor (고속 주축계에서 드로우바와 내장형 모터가 주축계의 동적 특성에 미치는 영향 분석)

  • Lim J.S.;Lee C.M.;Chung W.J.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.06a
    • /
    • pp.1640-1643
    • /
    • 2005
  • This paper presents analysis of dynamic characteristics of a high-speed milling spindle with a drawbar and a built-in motor. The spindle system with a built-in motor can be used to simplify the structure of machine tools, to improve the machining flexibility of machine tools, and to perform the high speed machining. In this system the shaft is usually assumed as a rigid rotor. In this paper, the modal characteristics of drawbar in high-speed milling spindle system due to supporting stiffness between drawbar and shaft and considering the mass and stiffness effects of the built-in motor's rotor are analyzed by numerical method. The result shows enough stiff supports must be provided between shaft and drawbar to prevent occurring drawbar vibration lower than the natural frequency of 1st bending mode of spindle. And considering the mass and stiffness of built-in motor's rotor is important thing to derive more accurate results.

  • PDF

A Delta-Sigma Fractional-N Frequency Synthesizer for Quad-Band Multi-Standard Mobile Broadcasting Tuners in 0.18-μm CMOS

  • Shin, Jae-Wook;Kim, Jong-Sik;Kim, Seung-Soo;Shin, Hyun-Chol
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.7 no.4
    • /
    • pp.267-273
    • /
    • 2007
  • A fractional-N frequency synthesizer supports quadruple bands and multiple standards for mobile broadcasting systems. A novel linearized coarse tuned VCO adopting a pseudo-exponential capacitor bank structure is proposed to cover the wide bandwidth of 65%. The proposed technique successfully reduces the variations of KVCO and per-code frequency step by 3.2 and 2.7 times, respectively. For the divider and prescaler circuits, TSPC (true single-phase clock) logic is extensively utilized for high speed operation, low power consumption, and small silicon area. Implemented in $0.18-{\mu}m$ CMOS, the PLL covers $154{\sim}303$ MHz (VHF-III), $462{\sim}911$ MHz (UHF), and $1441{\sim}1887$ MHz (L1, L2) with two VCO's while dissipating 23 mA from 1.8 V supply. The integrated phase noise is 0.598 and 0.812 degree for the integer-N and fractional-N modes, respectively, at 750 MHz output frequency. The in-band noise at 10 kHz offset is -96 dBc/Hz for the integer-N mode and degraded only by 3 dB for the fractional-N mode.

Dynamic deflection monitoring of high-speed railway bridges with the optimal inclinometer sensor placement

  • Li, Shunlong;Wang, Xin;Liu, Hongzhan;Zhuo, Yi;Su, Wei;Di, Hao
    • Smart Structures and Systems
    • /
    • v.26 no.5
    • /
    • pp.591-603
    • /
    • 2020
  • Dynamic deflection monitoring is an essential and critical part of structural health monitoring for high-speed railway bridges. Two critical problems need to be addressed when using inclinometer sensors for such applications. These include constructing a general representation model of inclination-deflection and addressing the ill-posed inverse problem to obtain the accurate dynamic deflection. This paper provides a dynamic deflection monitoring method with the placement of optimal inclinometer sensors for high-speed railway bridges. The deflection shapes are reconstructed using the inclination-deflection transformation model based on the differential relationship between the inclination and displacement mode shape matrix. The proposed optimal sensor configuration can be used to select inclination-deflection transformation models that meet the required accuracy and stability from all possible sensor locations. In this study, the condition number and information entropy are employed to measure the ill-condition of the selected mode shape matrix and evaluate the prediction performance of different sensor configurations. The particle swarm optimization algorithm, genetic algorithm, and artificial fish swarm algorithm are used to optimize the sensor position placement. Numerical simulation and experimental validation results of a 5-span high-speed railway bridge show that the reconstructed deflection shapes agree well with those of the real bridge.

Selecting Position of Bearings to Improve Dynamic Characteristics of A High-speed Milling Spindle (고속 주축의 진동 특성 향상을 위한 베어링의 위치 선정)

  • Lim J.S.;Hwang Y.K.;Lee W.C.;Lee C.M.;Chung W.J.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.10a
    • /
    • pp.865-868
    • /
    • 2005
  • This paper presents analysis of dynamic characteristics of a high-speed milling spindle with a built-in motor. The spindle system with a built-in motor can be used to simplify the structure of machine tools. to improve tire machining flexibility of machine. tools, and to perform the high speed machining. In this system the shaft is usually assumed as a rigid rotor. In the spindle system design, it is very important to improve modal characteristics, and modal analysis is performed in the first place. Therefore in this paper, on the assumption that supporting bearings of spindle was selected most suitable condition, analyzed dynamic characteristics of a high-speed spindle according to its position. Optimal design was applicated to select most suitable position of bearings. Considered tile mass and stiffness effects of the built-in motor's rotor are analyzed by numerical method. The result shows the natural frequency of 1st bending mode of spindle.

  • PDF

A Study on Design of the High-speed Motor/Generator for Micro-Gas Turbine (마이크로 가스터빈용 고속 전동/발전기 설계에 관한 연구)

  • Jeong, Y.H.;Kang, D.H.;Ahn, J.B.;Jang, S.M.
    • Proceedings of the KIEE Conference
    • /
    • 2002.07b
    • /
    • pp.723-725
    • /
    • 2002
  • In this paper, The basic design and the steady-state performances of a high-speed permanent magnet synchronous motor/generator (PMSMG) for gas-turbine are presented. For deveoping a high-speed machine, it must be taken account into the mechanical view as well as the electrical because of high centrifugal force of a rotor. Based on considering those, this paper deals with the characteristics of generating mode and motoring mode from a electrical point of view.

  • PDF

A Study on the Performance of CBN Tools in the Machining of Hardened Die-Materials by High-Speed face Milling (금형용 고경도재의 고속정면밀링 가공시 CBN 공구의 성능에 관한 연구)

  • 조성실;임근영;김태영
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1996.11a
    • /
    • pp.26-30
    • /
    • 1996
  • This paper presents the performance of CBN tools in the machining of hardened die-materials, SKD11 and SKD61 steel with HRC 50, by high-speed face milling. Generally, grinding or EDM is being used in machining of hardened materials but the cost is very high. If those can be replaced by cutting, it will be a greatly economical advantage. CBN tool has been recognized as an effective tool in turning, but it has not been in milling. So wear and surface roughness mode of CBN tool for hardened SKD11 and SKD61 steel were investigated by high-speed face milling in this study Also the relation between cutting force and wear mode of CBN tools was investigated.

  • PDF

Harmonics Measurement and Analysis for Korea High Speed Train Prototype (한국형 고속전철 시제차량 고조파 계측 및 분석)

  • Lee Tae-Hyung;Park Choon-Soo
    • Proceedings of the KSR Conference
    • /
    • 2004.06a
    • /
    • pp.1415-1419
    • /
    • 2004
  • It is essential to evaluate harmonic characteristics of high speed train using power electronics equipment such as converter-driven motor drives, battery chargers and auxiliary power supplies. The purpose of this study is to measure and analyze harmonics characteristics of korea high speed train prototype. This paper presents result of harmonics measurement and analysis of harmonics characteristics in terms of loading, speed and operation mode.

  • PDF