• Title/Summary/Keyword: high power amplifier (HPA)

Search Result 105, Processing Time 0.029 seconds

Design and Implementation of High Pouter Amplifier for IMT-2000 Repeater (IMT-2000 중계기용 전력증폭기의 설계 및 제작)

  • 황상훈;방성일
    • Proceedings of the IEEK Conference
    • /
    • 2001.06a
    • /
    • pp.185-188
    • /
    • 2001
  • In this paper, we design and implement high-power amplifier with 18 watt for W-CDMA repeater. We simulate microwave circuits using RF simulator, ADS1.3 and optimize the circuit to obtain the linear and high power using Harmonic balance method. Harmonic balance is an excellent method in the analysis of nonlinear system. The HPA is fabricated on tefron substrate($\varepsilon_{{\gamma}}$=3.48, h=0.5mm, T=0.035mm). From the measured result, the HPA has gain of 52dB, 1 dB compression power of 52.8dBm and good ACPR (Adjacent Channel Power Radio) performance.l Power Radio) performance.

  • PDF

A Study on the Peak cancellation Technique of OFDM considering of the HPA characteristic (HPA 특성을 고려한 OFDM의 Peak cancellation기법)

  • Lee, Seung-Sun;Oh, Tae-Won
    • Proceedings of the Korea Electromagnetic Engineering Society Conference
    • /
    • 2005.11a
    • /
    • pp.69-74
    • /
    • 2005
  • The High Peak to Average Power Ratio (PAPR) could be a severe Problem in OFDM performance since it causes the significant distortion to the transmitting signal through a nonlinear device such as High Power Amplifier (HPA). In this paper, the performance of Peak cancellation method according to the HPA characteristic is comparatively analyzed with the clipping and windowing methods. The BER performances and the out-band power spectrums are demonstrated in detail.

  • PDF

A Canonical Piecewise-Linear Model-Based Digital Predistorter for Power Amplifier Linearization (전력 증폭기의 선형화를 위한 Canonical Piecewise-Linear 모델 기반의 디지털 사전왜곡기)

  • Seo, Man-Jung;Shim, Hee-Sung;Im, Sung-Bin;Hong, Seung-Mo
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.47 no.2
    • /
    • pp.9-17
    • /
    • 2010
  • Recently, there has been much interest in orthogonal frequency division multiplexing (OFDM) for next generation wireless wideband communication systems. OFDM is a special case of multicarrier transmission, where a single data stream is transmitted over a number of lower-rate subcarriers. One of the main reasons to use OFDM is to increase robustness against frequency-selective fading or narrowband interference. However, in the radio systems it is also important to distortion introduced by high power amplifiers (HPA's) such as solid state power amplifier (SSPA) considered in this paper. Since the signal amplitude of the OFDM system is Rayleigh-distributed, the performance of the OFDM system is significantly degraded by the nonlinearity of the HPA in the OFDM transmitter. In this paper, we propose a canonical piecewise-linear (PWL) model based digital predistorter to prevent signal distortion and spectral re-growth due to the high peak-to-average power ratio (PAPR) of OFDM signal and the nonlinearity of HPA's. Computer simulation on an OFDM system under additive white Gaussian noise (AWGN) channels with QPSK, 16-QAM and 64-QAM modulation schemes and modulator/demodulator implemented with 1024-point FFT/IFFT, demonstrate that the proposed predistorter achieves significant performance improvement by effectively compensating for the nonlinearity introduced by the SSPA.

A Ka-Band 6-W High Power MMIC Amplifier with High Linearity for VSAT Applications

  • Jeong, Jin-Cheol;Jang, Dong-Pil;Yom, In-Bok
    • ETRI Journal
    • /
    • v.35 no.3
    • /
    • pp.546-549
    • /
    • 2013
  • A Ka-band 6-W high power microwave monolithic integrated circuit amplifier for use in a very small aperture terminal system requiring high linearity is designed and fabricated using commercial 0.15-${\mu}m$ GaAs pHEMT technology. This three-stage amplifier, with a chip size of 22.1 $mm^2$ can achieve a saturated output power of 6 W with a 21% power-added efficiency and 15-dB small signal gain over a frequency range of 28.5 GHz to 30.5 GHz. To obtain high linearity, the amplifier employs a class-A bias and demonstrates an output third-order intercept point of greater than 43.5 dBm over the above-mentioned frequency range.

SETTING OF HPA OUTPUT POWER IN COMS DATS CONSIDERING IMD CHARACTERISTICS

  • Park, Durk-Jong;Yang, Hyung-Mo;Ahn, Sang-Il
    • Proceedings of the KSRS Conference
    • /
    • v.1
    • /
    • pp.204-207
    • /
    • 2006
  • COMS will receive two different meteorological signals in S-Band from IDACS (Image Data Acquisition and Control System) in ground station before transmitting them in L-Band to user station. MODCS (Meteorological Ocean Data Communication Subsystem) in satellite released the value of required PFD (Power Flux Density) to receive two signals. Thus, DATS (Data Acquisition and Transmission Subsystem) needs to send two signals to satellite with a satisfied EIRP. The value of minimum HPA (High Power Amplifier) output power was estimated by subtracting antenna directional gain and path loss between antenna and HPA from the needed EIRP in this paper. Besides the minimum output power of HPA, the maximum output power was also calculated with considering IMD (Inter-Modulation Distortion) characteristics. IMD is always occurred in the output of HPA when LRIT and HRIT are amplified by using single HPA as COMS application. In this paper, the setting of maximum output power was determined when the IMD of modelled HPA was corresponded to the requirement of MODCS.

  • PDF

SER Analysis of Arbitrary Two-Dimensional Signaling over Nonlinear AWGN Channels (비선형 채널에서 임의의 2차원 변조 신호의 SER 분석)

  • Lee, Jae-Yoon;Yoon, Dong-Weon;Cho, Kyong-Kuk
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.32 no.7A
    • /
    • pp.738-745
    • /
    • 2007
  • The non-linearity of HPA(high power amplifier) which is an important component in modern communications systems introduces AM/AM and AM/PM distortion so that the transmitted signal is deteriorated. And, the I/Q unbalances and phase error which are generated by non-ideal components are inevitable physical phenomena and lead to performance degradation when we implement a practical two-dimensional (2-D) modulation system. In this paper, we provide an exact and general expression involving the 2-D Gaussian Q-function for the error probabilities of arbitrary 2-D signaling with I/Q amplitude and phase unbalances in nonlinear additive white Gaussian noise (AWGN) channels by using the coordinate rotation and shifting technique.

Design and Analysis of 4D-8PSK-TCM System Considering the Nonlinear HPA Environment (비선형 HPA 환경을 고려한 4D-8PSK-TCM 시스템의 설계 및 분석)

  • An, Changyoung;Ryu, Sang-Burm;Lee, Sang-Gyu;Ryu, Heung-Gyoon
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.29 no.4
    • /
    • pp.299-307
    • /
    • 2018
  • Considering a nonlinear high power amplifier(HPA) and a predistorter, we have designed a four-dimensional 8-ary phase shift keying trellis-coded modulation(4D-8PSK-TCM) system, which is recommended for X-band satellite communications. Subsequently, we have evaluated and analyzed the spectrum, constellation characteristics, and BER performance of the system. In satellite communications, owing to the limited power, nonlinear characteristics that determine the operating point of the HPA must be analyzed because the HPA consumes high power. We herein report the design of the 4D-8PSK-TCM system, with efficiencies of 2 and 2.25 bits/channel-symbol. The simulation results confirmed that a 0.35 roll-off value is effective, considering the low peak-to-average power ratio(PAPR) characteristic and the narrow occupation bandwidth of the spectrum. It also confirmed that approximately 15~20 dB of output backoff(OBO) value is required at the HPA when the predistorter is not used, and approximately 1 dB of the OBO value is required when the predistorter is used.

Measurement of Peak-to-Average Power Ratio for HRIT

  • Park Durk-Jong;Yang Hyung-Mo;Ahn Sang-Il
    • Proceedings of the KSRS Conference
    • /
    • 2004.10a
    • /
    • pp.498-500
    • /
    • 2004
  • QPSK (Quaternary Phase Shift Keying) will be adopted as the modulation of HRIT (High Rate Information Transmission) which is transmitted to COMS (Communication, Ocean and Meteorological Satellite) through HPA (High Power Amplifier) in ground segment. Due to the nonlinearity of HPA, IMD (Inter-Modulation Distortion) of multi-carrier signals and PAPR (Peak-to-Average Power Ratio) of modulated HRIT must be considered to estimate the output power of HPA. In this paper, we measured the PAPR to various the roll-off factor of RRC (Root Raised Cosine filter) which is filtering the modulated HRIT signal for reducing ISI (Inter-Symbol Interference) and bandwidth. It was found that the minimum PAPR is 2.78dB at 0.5 of roll-off factor for scrambled data. It's 2.78dB of P APR will be in output power selecting in COMS earth station.

  • PDF

Peak-to-Average Power Ratio (PAPR) Reduction Techniques of OFDM Signals

  • Lee, Byung-Moo
    • Proceedings of the IEEK Conference
    • /
    • 2008.06a
    • /
    • pp.7-8
    • /
    • 2008
  • It is well-known that one of the most serious problems of Orthogonal Frequency Divison Multiplexing (OFDM) is its high Peak-to-Average Power Ratio (PAPR) which seriously limits the power efficiency of High Power Amplifier (HPA). This paper introduces various methodologies to cope with this problem.

  • PDF

A Novel Design of High Power Amplifier Employing Photonic Band Gap in Millimeter Wave Band

  • Seo Chul-Hun
    • Journal of electromagnetic engineering and science
    • /
    • v.6 no.2
    • /
    • pp.98-102
    • /
    • 2006
  • In this paper, we have designed and fabricated the high power amplifier employing PBG(Photonic Band-Gap Structure) to improve the linearity of the amplifier in the millimeter wave band. The fabricated amplifier using MMIC(TGA1073G) has operated about 24 GHz band and the PBG has resulted in 35 dB suppression about 49 GHz where the second harmonic occurs due to the amplifier. As a result, the output power has been 24.43 dBm and 13.2 dBc of the IMD has been improved. Also, the PAE is obtained to 14.96 % of the amplifier employing the PBG structure in Ka band.