A Canonical Piecewise-Linear Model-Based Digital Predistorter for Power Amplifier Linearization

전력 증폭기의 선형화를 위한 Canonical Piecewise-Linear 모델 기반의 디지털 사전왜곡기

  • 서만중 (숭실대학교 정보통신전자공학부) ;
  • 심희성 (숭실대학교 정보통신전자공학부) ;
  • 임성빈 (숭실대학교 정보통신전자공학부) ;
  • 홍승모 ((주)알에프윈도우)
  • Published : 2010.02.25

Abstract

Recently, there has been much interest in orthogonal frequency division multiplexing (OFDM) for next generation wireless wideband communication systems. OFDM is a special case of multicarrier transmission, where a single data stream is transmitted over a number of lower-rate subcarriers. One of the main reasons to use OFDM is to increase robustness against frequency-selective fading or narrowband interference. However, in the radio systems it is also important to distortion introduced by high power amplifiers (HPA's) such as solid state power amplifier (SSPA) considered in this paper. Since the signal amplitude of the OFDM system is Rayleigh-distributed, the performance of the OFDM system is significantly degraded by the nonlinearity of the HPA in the OFDM transmitter. In this paper, we propose a canonical piecewise-linear (PWL) model based digital predistorter to prevent signal distortion and spectral re-growth due to the high peak-to-average power ratio (PAPR) of OFDM signal and the nonlinearity of HPA's. Computer simulation on an OFDM system under additive white Gaussian noise (AWGN) channels with QPSK, 16-QAM and 64-QAM modulation schemes and modulator/demodulator implemented with 1024-point FFT/IFFT, demonstrate that the proposed predistorter achieves significant performance improvement by effectively compensating for the nonlinearity introduced by the SSPA.

최근 들어, 차세대 무선 광대역 통신 시스템의 전송 방식으로 큰 관심을 받고 있는 OFDM (Orthogonal Frequency Division Multiplexing) 시스템은 다수 반송파 전송의 특수한 형태로 볼 수 있으며 하나의 데이터열이 보다 낮은 데이터 전송률을 갖는 부반송파를 통해 전송된다. OFDM을 사용하는 중요한 이유 중 하나는 OFDM을 사용하면 주파수 선택적 페이딩이나 협대역 간섭에 대한 강건함이 증가하기 때문이다. 하지만 출력 신호의 크기가 Rayleigh 분포를 갖기 때문에 무선 통신 환경에서 SSPA (Solid State Power Amplifier)와 같은 고출력 증폭기 (High Power Amplifier; HPA)의 비선형 특성으로 인하여 단일 반송파 전송 방식보다 심각한 비선형 왜곡이 발생하게 된다. 본 논문에서는 OFDM 신호의 높은 PAPR (Peak-to-Average Power Ratio)과 HPA의 비선형성에 의한 신호의 왜곡과 스펙트럼의 확산을 방지하기 위해 canonical piecewise-linear (PWL) 모델 기반의 디지털 사전왜곡기를 제안한다. 제안된 사전왜곡기의 성능평가를 위해 AWGN (Additive White Gaussian Noise) 채널 하에서 QPSK, 16-QAM, 64-QAM 변조 방식을 이용하고, 1024-point FFT/IFFT로 구현된 OFDM 시스템에 대한 모의실험을 실시한 결과, 비트오율과 비선형성 개선측면에서 우수한 성능을 나타내었다.

Keywords

References

  1. Ramjee Prasad, OFDM for Wireless Communications Systems, Artech House, 2004.
  2. L. J. Cimini, "Analysis and simulation of a digital mobile channel using orthogonal frequency division multiplexing," IEEE Trans. Commun., vol. 33, no. 7, pp. 665-675, Jul. 1985. https://doi.org/10.1109/TCOM.1985.1096357
  3. M. Alard and R. Lassalle, "Principles of modulation and channel coding for digital broadcasting for mobile receivers," EBU Review Technical, no. 224, pp. 168-190, Aug. 1987.
  4. A. A. M. Saleh, "Frequency-Independent and Frequency-Dependent Nonlinear Models of TWT amplifiers," IEEE Trans. Commun., vol. COM-29, no. 11, pp. 1715-1720, Nov. 1981.
  5. C. Rapp, "Effects of HPA-nonlinearity on a 4-DPSK/OFDM-signal for a digital sound broadcasting signal," Proc. ECSC-2, Liege, Belgium, pp. 179-184. Oct. 1991.
  6. S. C. Cripps, RF Power Amplifiers for Wireless Communications, Northwood, MA: Artech House, 1999.
  7. A. S. Wright and W. G. Durtler, "Experimental performance of an adaptive digital linearized power amplifier," IEEE Trans. Veh. Technol., vol. 41, no. 4, pp. 395-400, Nov. 1992. https://doi.org/10.1109/25.182589
  8. K. J. Muhonen, M. Kavehrad, and R. Krishnamoorthy, "Look-up table techniques for adaptive digital predistortion: a development and comparison," IEEE Trans. Veh. Technol., vol. 49, no. 5, pp. 1995-2002, Sep. 2000. https://doi.org/10.1109/25.892601
  9. A. N. D'Andrea, V. Lottici, and R. Reggiannini, "Efficient digital predistortion in radio realy links with nonlinear power amplifiers," IEE Proc. Commun., vol. 147, no. 3, pp.175-179, Jun. 2000. https://doi.org/10.1049/ip-com:20000358
  10. D. R. Morgan, Z. Ma, J. Kim, M. G. Zierdt, and J. Pastalan, "A Generalized Memory Polynomial Model for Digital Predistortion of RF Power Amplifiers." IEEE Trans. Signal Process., vol. 54, no. 10, pp. 3852-3860, Oct. 2006. https://doi.org/10.1109/TSP.2006.879264
  11. L. O. Chua and R. Ying, "Canonical Piecewise-Linear Analysis," IEEE Trans. Circuits Syst., vol. CAS-30, no. 3, pp. 125-140, Mar. 1983.
  12. L. O. Chua and A. C. Deng, "Canonical Piecewise-Linear Modeling," IEEE Trans. Circuits Syst., vol. CAS-33, no. 5, pp. 511-525, May 1986.
  13. C. Kahlert and L. O. Chua, "A Generalized Canonical Piecewise-Linear Representation," IEEE Trans. Circuits Syst., vol. 37, no. 3, pp. 373-383, Mar. 1990. https://doi.org/10.1109/31.52731
  14. R. Batruni, "A Multilayer Neural Network with Piecewise-Linear Structure and Back-Propagation Learning," IEEE Trans. Neural Netw., vol. 2, no. 3, pp. 395-403, May 1991. https://doi.org/10.1109/72.97915
  15. M. Ghaderi, "Adaptive predistortion lineariser using polynomial functions," IEEE Proc. Commun., vol. 141, no. 2, pp. 49-55, Apr. 1994. https://doi.org/10.1049/ip-com:19941048