• Title/Summary/Keyword: high performance materials

검색결과 4,009건 처리시간 0.03초

Advanced Pad Conditioner Design for Oxide/Metal CMP

  • Hwang Tae-Wook;Baldoni Gary;Tanikella Anand;Puthanangady Thomas
    • Transactions on Electrical and Electronic Materials
    • /
    • 제7권2호
    • /
    • pp.62-66
    • /
    • 2006
  • Advanced CMP conditioner design requires investigations of key conditioner manufacturing parameters and their effects on pad surface and then wafer performance. In the present investigation, diamond shape, concentration, distribution, and other key manufacturing parameters are considered to improve CMP process stability and conditioner life. Self avoiding random distribution ($SARD^{TM}$) of diamond abrasives has been developed and both numerical simulation and experimental results show very stable and reliable polishing performance.

리튬이온전지 음극의 고속 성능 향상을 위한 도전재 복합화 (Composited Conductive Materials for Enhancing the Ultrafast Performance for Anode in Lithium-Ion Battery)

  • 성기욱;안효진
    • 한국재료학회지
    • /
    • 제32권11호
    • /
    • pp.474-480
    • /
    • 2022
  • Lithium-ion batteries (LIBs) are powerful energy storage devices with several advantages, including high energy density, large voltage window, high cycling stability, and eco-friendliness. However, demand for ultrafast charge/discharge performance is increasing, and many improvements are needed in the electrode which contains the carbon-based active material. Among LIB electrode components, the conductive additive plays an important role, connecting the active materials and enhancing charge transfer within the electrode. This impacts electrical and ionic conductivity, electrical resistance, and the density of the electrode. Therefore, to increase ultrafast cycling performance by enhancing the electrical conductivity and density of the electrode, we complexed Ketjen black and graphene and applied conductive agents. This electrode, with the composite conductive additives, exhibited high electrical conductivity (12.11 S/cm), excellent high-rate performance (28.6 mAh/g at current density of 3,000 mA/g), and great long-term cycling stability at high current density (88.7 % after 500 cycles at current density of 3,000 mA/g). This excellent high-rate performance with cycling stability is attributed to the increased electrical conductivity, due to the increased amount of graphene, which has high intrinsic electrical conductivity, and the high density of the electrode.

전기자동차용 리튬이온전지를 위한 양극전극 분말 재료의 연구 동향 (Research Trends of Cathode Materials for Lithium-Ion Batteries used in Electric Vehicles)

  • 신동요;안효진
    • 한국분말재료학회지
    • /
    • 제26권1호
    • /
    • pp.58-69
    • /
    • 2019
  • High performance lithium-ion batteries (LIBs) have attracted considerable attention as essential energy sources for high-technology electrical devices such as electrical vehicles, unmanned drones, uninterruptible power supply, and artificial intelligence robots because of their high energy density (150-250 Wh/kg), long lifetime (> 500 cycles), low toxicity, and low memory effects. Of the high-performance LIB components, cathode materials have a significant effect on the capacity, lifetime, energy density, power density, and operating conditions of high-performance LIBs. This is because cathode materials have limitations with respect to a lower specific capacity and cycling stability as compared to anode materials. In addition, cathode materials present difficulties when used with LIBs in electric vehicles because of their poor rate performance. Therefore, this study summarizes the structural and electrochemical properties of cathode materials for LIBs used in electric vehicles. In addition, we consider unique strategies to improve their structural and electrochemical properties.

3차원 나노구조화 기술을 이용한 고성능 기능성 세라믹 연구개발 동향 (Recent Advances in High-performance Functional Ceramics using 3D Nanostructuring Techniques)

  • 안창의;박준용;전석우
    • 세라미스트
    • /
    • 제22권3호
    • /
    • pp.230-242
    • /
    • 2019
  • Functional ceramics are widely utilized in a variety of application fields such as structural materials, sensors, energy devices, purification filter and etc due to their high strength, stability and chemical activity. With the breakthrough development of nanotechnology, many researchers have studied new types of nanomaterials including nanoparticle, nanorod, nanowire and nanoplate to realize high-performance ceramics. Especially several groups have focused on the 3D nanostructured ceramics because of their large surface area, efficient load transfer, ultra-fast ion diffusion and superior electrical (or thermal) conductivity. In this review, we introduce the reported fabrication strategies of the 3D nanostructured and functional ceramics, also summarized the 3D nanostructured ceramic based high-performance applications containing photocatalysts, structural materials, energy harvesting and storage devices.

Development of High Performance Valve Seat Insert Materials for Gas Engines

  • Kawata, Hideaki;Maki, Kunio
    • 한국분말야금학회:학술대회논문집
    • /
    • 한국분말야금학회 2006년도 Extended Abstracts of 2006 POWDER METALLURGY World Congress Part 1
    • /
    • pp.391-392
    • /
    • 2006
  • Sintered materials have been applied widely in Valve Seat Inserts (VSI). The amount of wear on VSIs increases when used in gas (LPG, CNG) engines because of their dry environments. In this paper, two newly developed high performance VSI materials for gas engines are introduced. These materials applied new techniques, which are both high performance hard particle and new distribution method of solid lubricant, to increase wear resistance.

  • PDF

Recent Progress in Cathode Materials for Thermal Batteries

  • Ko, Jaehwan;Kang, Seung Ho;Cheong, Hae-Won;Yoon, Young Soo
    • 한국세라믹학회지
    • /
    • 제56권3호
    • /
    • pp.233-255
    • /
    • 2019
  • Thermal batteries are reserve batteries with molten salts as an electrolyte, which activates at high temperature. Due to their excellent reliability, long shelf life, and mechanical robustness, thermal batteries are used in military applications. A high-performance cathode for thermal batteries should be considered in terms of its high capacity, high voltage, and high thermal stability. Research progress on cathode materials from the recent decade is reviewed in this article. The major directions of research were surface modification, compounding of existing materials, fabrication of thin film cathode, and development of new materials. In order to develop a high-performance cathode, a proper combination of these research directions is required while considering mass production and cost.

하이브리드 보강기법을 활용한 고강도 콘크리트 구조 부재의 성능 향상 (Enhancing the Performance of High-Strength Concrete Members Using Hybrid Reinforcing Technique)

  • 양준모
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2010년도 춘계 학술대회 제22권1호
    • /
    • pp.479-480
    • /
    • 2010
  • 콘크리트 구조물의 고성능, 고내구성화를 위해 콘크리트 뿐만 아니라 보강 재료에 대한 성능 향상이 요구되고 있다. 본 연구에서는 고성능의 보강재료를 복합적으로 적용하여 고강도 콘크리트 구조물의 성능 극대화를 도모하는 하이브리드 보강기법에 대한 연구를 수행하였다.

  • PDF

Role of ingredients for high strength and high performance concrete - A review

  • Parande, A.K.
    • Advances in concrete construction
    • /
    • 제1권2호
    • /
    • pp.151-162
    • /
    • 2013
  • The performance characteristics of high-strength and high-performance concrete are discussed in this review. Recent developments in the field of high-performance concrete marked a giant step forward in high-tech construction materials with enhanced durability, high compressive strength and high modulus of elasticity particularly for industrial applications. There is a growing awareness that specifications requiring high compressive strength make sense only when there are specific strength design advantages. HPC today employs blended cements that include silica fume, fly ash and ground granulated blast-furnace slag. In typical formulations, these cementitious materials can exceed 25% of the total cement by weight. Silica fume contributes to strength and durability; and fly ash and slag cement to better finish, decreased permeability, and increased resistance to chemical attack. The influences of various mineral admixtures such as fly ash, silica fume, micro silica, slag etc. on the performance of high-strength concrete are discussed.

전기 이중층 커패시터용 메조 다공성 탄소 나노섬유의 제조 (Fabrication of Mesoporous Carbon Nanofibers for Electrical Double-Layer Capacitors)

  • 이도영;안건형;안효진
    • 한국재료학회지
    • /
    • 제27권11호
    • /
    • pp.617-623
    • /
    • 2017
  • Mesoporous carbon nanofibers as electrode material for electrical double-layer capacitors(EDLCs) are fabricated using the electrospinning method and carbonization. Their morphologies, structures, chemical bonding states, porous structure, and electrochemical performance are investigated. The optimized mesoporous carbon nanofiber has a high sepecific surface area of $667m^2\;g^{-1}$, high average pore size of 6.3 nm, and high mesopore volume fraction of 80 %, as well as a unifom network structure consiting of a 1-D nanofiber stucture. The optimized mesoporous carbon nanofiber shows outstanding electrochemical performance with high specific capacitance of $87F\;g^{-1}$ at a current density of $0.1A\;g^{-1}$, high-rate performance ($72F\;g^{-1}$ at a current density of $20.0A\;g^{-1}$), and good cycling stability ($92F\;g^{-1}$ after 100 cycles). The improvement of the electrochemical performance via the combined effects of high specific surface area are due to the high mesopore volume fraction of the carbon nanofibers.

High performance organic gate dielectrics for solution processible organic and inorganic thin-film transitors

  • 가재원;장광석;이미혜
    • 한국재료학회:학술대회논문집
    • /
    • 한국재료학회 2012년도 춘계학술발표대회
    • /
    • pp.64.1-64.1
    • /
    • 2012
  • Next generation displays such as high performance LCD, AMOLED, flexible display and transparent display require specific TFT back-planes. For high performance TFT back-planes, low temperature poly silicon (LTPS), and metal-oxide semiconductors are studied. Flexible TFT backplanes require low temperature processible organic semiconductors. Not only development of active semiconducting materials but also design and synthesis of semiconductor corresponding gate dielectric materials are important issues in those display back-planes. In this study, we investigate the high heat resistant polymeric gate dielectric materials for organic TFT and inorganic TFT with good insulating properties and processing chemical resistance. We also controlled and optimized surface energy and morphology of gate dielectric layers for direct printing process with solution processible organic and inorganic semiconductors.

  • PDF