Browse > Article
http://dx.doi.org/10.4150/KPMI.2019.26.1.58

Research Trends of Cathode Materials for Lithium-Ion Batteries used in Electric Vehicles  

Shin, Dong-Yo (Program of Materials Science & Engineering, Convergence Institute of Biomedical Engineering and Biomaterials, Seoul National University of Science and Technology)
Ahn, Hyo-Jin (Program of Materials Science & Engineering, Convergence Institute of Biomedical Engineering and Biomaterials, Seoul National University of Science and Technology)
Publication Information
Journal of Powder Materials / v.26, no.1, 2019 , pp. 58-69 More about this Journal
Abstract
High performance lithium-ion batteries (LIBs) have attracted considerable attention as essential energy sources for high-technology electrical devices such as electrical vehicles, unmanned drones, uninterruptible power supply, and artificial intelligence robots because of their high energy density (150-250 Wh/kg), long lifetime (> 500 cycles), low toxicity, and low memory effects. Of the high-performance LIB components, cathode materials have a significant effect on the capacity, lifetime, energy density, power density, and operating conditions of high-performance LIBs. This is because cathode materials have limitations with respect to a lower specific capacity and cycling stability as compared to anode materials. In addition, cathode materials present difficulties when used with LIBs in electric vehicles because of their poor rate performance. Therefore, this study summarizes the structural and electrochemical properties of cathode materials for LIBs used in electric vehicles. In addition, we consider unique strategies to improve their structural and electrochemical properties.
Keywords
Lithium ion batteries; Cathode materials; Layered structure; Spinel structure; Olivine structure;
Citations & Related Records
연도 인용수 순위
  • Reference
1 R. Sun, P. Jakes, S. Eurich, D. Holt, S. Yang, M. Homberger, U. Simon, H. Kungl and R. Eichel: Appl. Magn. Reson., 49 (2018) 415.   DOI
2 M. M. Thackeray, P. J. Johnson, L. A. Picciotto, P.G. Bruce and J.B. Goodenough: Mater. Res. Bull., 19 (1984) 179.   DOI
3 D.-Y. Shin, Y.-G. Lee and H.-J. Ahn: J. Alloy. Compd., 727 (2017) 1165.   DOI
4 M. Bini, P. Boni, P. Mustarelli, I. Quinzeni, G. Bruni and D. Capsoni: Solid State Ion., 320 (2018) 1.   DOI
5 J.-H. Kim, A. Huq, M. Chi, N. P. W. Pieczonka, E. Lee, C. A. Bridges, M. M. Tessema, A. Manthiram, K. A. Persson and B. R. Powell: Chem. Mat., 26 (2014) 4377.   DOI
6 W. Sun, Y. Li, K. Xie, S. Luo, G. Bai, X. Tan and C. Zheng: Nano Energy, 54 (2018) 175.   DOI
7 L.-X. Yuan, Z.-H. Wang, W.-X. Zhang, X.-L. Hu, J.-T. Chen, Y.-H. Huang and J. B. Goodenough: Energy Environ. Sci., 4 (2011) 269.   DOI
8 A. K. Padhi, K. S. Nanjundaswamy and J. B. Goodenough: J. Electrochem. Soc., 144 (1997) 1188.   DOI
9 X. Wang, Z. Feng, J. Huang, W. Deng, X. Li, H. Zhang and Z. Wen: Carbon, 127 (2018) 149.   DOI
10 J. H. Ang, C. Goh, A. A. F. Saldivar and Y. Li: Energies, 10 (2017) 610.   DOI
11 G.-H. An, D.-Y. Lee and H.-J. Ahn: ACS Appl. Mater. Interfaces, 9 (2017) 12478.   DOI
12 G.-H. An, D.-Y. Lee, Y.-J. Lee and H.-J. Ahn: ACS Appl. Mater. Interfaces, 8 (2016) 30264.   DOI
13 D.-Y. Sin, I.-K. Park and H.-J. Ahn: RSC Adv., 6 (2016) 58823.   DOI
14 F. Wu and G. Yushin: Energy Environ. Sci., 10 (2017) 435.   DOI
15 P. Arora, R. E. White and M. Doyle: J. Electrochem. Soc., 145 (1998) 3647.   DOI
16 J. Vetter, P. Novak, M. R. Wagner, C. Veit, K.-C. Moller, J. O. Besenhard, M. Winter, M. Wohlfahrt-Mehrens, C. Vogler and A. Hammouche: J. Power Sources, 147 (2005) 269.   DOI
17 K. Ozawa: Solid State Ion., 69 (1994) 212.   DOI
18 D. K. Kim, P. Muralidharan, H.-W. Lee, Riccardo Ruffo, Y. Yang, C. K. Chan, H. Peng, R. A. Huggins and Y. Cui: Nano Lett., 8 (2008) 3948.   DOI
19 L. Lu, X. Han, J. Li, J. Hua and M. Ouyang: J. Power Sources, 226 (2013) 272.   DOI
20 M. S. Islam and C. A. J. Fisher: Chem. Soc. Rev., 43 (2014) 185.   DOI
21 Y. Shao-Horn, L. Croguennec, C. Delmas, E. C. Nelson and M. A. O'keefe: Nat. Mater., 2 (2003) 464.   DOI
22 S. Liu, L. Xiong and C. He: J. Power Sources, 261 (2014) 285.   DOI
23 C.-S. An, B. Zhang, L.-B. Tang, B. Xiao and J.-C. Zheng: Electrochim. Acta, 283 (2018) 385.   DOI
24 B. Wang, Y. Xie, T. Liu, H. Luo, B. Wang, C. Wang, L. Wang, D. Wang, S. Dou and Y. Zhou: Nano Energy, 42 (2017) 363.   DOI
25 C. Gao, J. Zhou, G. Liu and L. Wang: J. Alloy. Compd., 727 (2017) 501.   DOI
26 L. Xue, Q. Zhang, X. Zhu, L. Gu, J. Yue, Q. Xia, T. Xing, T. Chen, Y. Yao and H. Xia: Nano Energy, 56 (2019) 463.   DOI
27 G. Yang, G. Jia, X. Shangguan, Z. Zhu, Z. Peng, Q. Zhuge, F. Li and X. Cui: J. Electrochem. Soc., 164 (2017) A2889.   DOI
28 C. Lv, J. Yang, Y. Peng, X. Duan, J. Ma, Q. Li and T. Wang: Electrochim. Acta, 297 (2019) 258.   DOI