Browse > Article
http://dx.doi.org/10.3740/MRSK.2017.27.11.617

Fabrication of Mesoporous Carbon Nanofibers for Electrical Double-Layer Capacitors  

Lee, Do-Young (Department of Materials Science and Engineering, Seoul National University of Science and Technology)
An, Geon-Hyoung (Program of Materials Science & Engineering, Convergence Institute of Biomedical Engineering and Biomaterials, Seoul National University of Science and Technology)
Ahn, Hyo-Jin (Department of Materials Science and Engineering, Seoul National University of Science and Technology)
Publication Information
Korean Journal of Materials Research / v.27, no.11, 2017 , pp. 617-623 More about this Journal
Abstract
Mesoporous carbon nanofibers as electrode material for electrical double-layer capacitors(EDLCs) are fabricated using the electrospinning method and carbonization. Their morphologies, structures, chemical bonding states, porous structure, and electrochemical performance are investigated. The optimized mesoporous carbon nanofiber has a high sepecific surface area of $667m^2\;g^{-1}$, high average pore size of 6.3 nm, and high mesopore volume fraction of 80 %, as well as a unifom network structure consiting of a 1-D nanofiber stucture. The optimized mesoporous carbon nanofiber shows outstanding electrochemical performance with high specific capacitance of $87F\;g^{-1}$ at a current density of $0.1A\;g^{-1}$, high-rate performance ($72F\;g^{-1}$ at a current density of $20.0A\;g^{-1}$), and good cycling stability ($92F\;g^{-1}$ after 100 cycles). The improvement of the electrochemical performance via the combined effects of high specific surface area are due to the high mesopore volume fraction of the carbon nanofibers.
Keywords
electrical double layer capacitors; electrode; mesoporous structure; carbon nanofiber;
Citations & Related Records
Times Cited By KSCI : 4  (Citation Analysis)
연도 인용수 순위
1 A. Lewandowski, P. Jakobczyk and M. Galinski, Electrochim. Acta, 86, 225 (2012).   DOI
2 M. N. Habashi and S. K. Asl, Korean J. Mater. Res., 27, 248 (2017).   DOI
3 D. -Y. Lee, G. -H. An and H. -J. Ahn, J. Ind. Eng. Chem., 52, 121 (2017).   DOI
4 H. -J. Ahn, J. I. Sohn, Y. -S. Kim, H. -S. Shim, W. B. Kim and T. -Y. Seong, Electrochem. Commun., 8, 513 (2006).   DOI
5 P. Cheng, S. Gao, P. Zang, X. Yang, Y. Bai, H. Xu, Z. Liu and Z. Lei, Carbon, 93, 315 (2015).   DOI
6 L. Ji, Z. Lin, A. J. Medford and X. Zhang, Carbon, 47, 3346 (2009).   DOI
7 G. -H. An and H. -J. Ahn, Carbon, 65, 87 (2013).   DOI
8 Y. Zhang, X. Sun, L. Pan, H. Li, Z. Sun, C. Sun and B. K. Tay, Solid State Ionics, 180, 1525 (2009).   DOI
9 A. Cao, C. Xu, J. Liang, D. Wu and B. Wei, Chem. Phys. Lett., 344, 13 (2001).   DOI
10 W. -Q. Han and A. Zettl, Nano Lett., 3, 681 (2003).   DOI
11 G. -H. An, D. -Y. Lee and H. -J. Ahn, ACS Appl. Mater. Interfaces, 9, 12478 (2017).   DOI
12 S. Ohara, T. Mousavand, M. Umetsu, S. Takami, T. Adschiri, Y. Kuroki and M. Takata, Soild State Ionics, 172, 261 (2004).   DOI
13 C. Wan and J. Li, Mater. Design, 83, 620 (2015).   DOI
14 G. -H. An, B. -R. Koo and H. -J. Ahn, Phys. Chem. Chem. Phys., 18, 6587 (2016).   DOI
15 G. -H. An, H. -J. Ahn and W. -K. Hong, J. Power Sources, 274, 536 (2015).   DOI
16 M. D. Stoller, S. Park, Y. Zhu, J. An and R. S. Ruoff, Nano Lett., 8, 3498 (2008).   DOI
17 I. Yang, G. Lee and J. C. Jung, Korean J. Mater. Res., 26, 696 (2016).   DOI
18 Y. -G. Lee, G. -H. An and H. -J. Ahn, Korean J. Mater. Res., 27, 192 (2017).   DOI
19 P. R. Choi, J. C. Jung, Y. -S. Lim and M. -S. Kim, Korean J. Mater. Res., 26, 460 (2016).   DOI
20 G. -H. An and H. -J. Ahn, ECS Soild State Lett., 2, M33 (2013).   DOI
21 G. Gryglewicz, J. Machnikowski, E. L. Grabowska, G. Lota and E. Frackowiak, Electrochim. Acta, 50, 1197 (2005).   DOI
22 Y. Zhang, H. Feng, X. Wu, L. Wang, A. Zhang, T. Xia, H. Dong, X. Li and L. Zhang, Int. J. Hydrogen, Energ., 34, 4889 (2009).   DOI