• Title/Summary/Keyword: high pH

Search Result 9,447, Processing Time 0.042 seconds

Microstructure and plasma resistance of Y2O3 ceramics (Y2O3 세라믹스의 미세구조 및 플라즈마 저항성)

  • Lee, Hyun-Kyu;Lee, Seokshin;Kim, Bi-Ryong;Park, Tae-Eon;Yun, Young-Hoon
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.24 no.6
    • /
    • pp.268-273
    • /
    • 2014
  • $Y_2O_3$ ceramic specimens were fabricated from the granular powder, obtained by spray drying process from the slurry. The slurry was prepared by mixing PVA binder, NaOH for Ph control, PEG and $Y_2O_3$ powder. The $Y_2O_3$ specimen was shaped in size of ${\phi}14mm$ and then sintered at $1650^{\circ}C$. The characteristics, microstructure, densities and plasma resistance of the $Y_2O_3$ specimens were investigated with the function of forming pressure and sintering time. $Y_2O_3$ specimens were exposed under the $CHF_3/O_2/Ar$ plasma, the dry etching treatment of specimens was carried out by the physical reaction etching of $Ar^+$ ion beam and the chemical reaction etching of $F^-$ ion decomposed from $CHF_3$. With increasing sintering time, $Y_2O_3$ specimens showed relatively high density and strong resistance in plasma etching test.

Implications of Impacts of Climate Change on Forest Product Flows and Forest Dependent Communities in the Western Ghats, India

  • Murthy, Indu K.;Bhat, Savithri;Sathyanarayan, Vani;Patgar, Sridhar;M., Beerappa;Bhat, P.R.;Bhat, D.M.;Gopalakrishnan, Ranjith;Jayaraman, Mathangi;Munsi, Madhushree;N.H., Ravindranath;M.A., Khalid;M., Prashant;Iyer, Sudha;Saxena, Raghuvansh
    • Journal of Forest and Environmental Science
    • /
    • v.30 no.2
    • /
    • pp.189-200
    • /
    • 2014
  • The tropical wet evergreen, tropical semi evergreen and moist deciduous forest types are projected to be impacted by climate change. In the Western Ghats region, a biodiversity hotspot, evergreen forests including semi evergreen account for 30% of the forest area and according to climate change impact model projections, nearly a third of these forest types are likely to undergo vegetation type change. Similarly, tropical moist deciduous forests which account for about 28% of the forest area are likely to experience change in about 20% of the area. Thus climate change could adversely impact forest biodiversity and product flow to the forest dependent households and communities in Uttara Kannada district of the Western Ghats. This study analyses the distribution of non-timber forest product yielding tree species through a network of twelve 1-ha permanent plots established in the district. Further, the extent of dependence of communities on forests is ascertained through questionnaire surveys. On an average 21% and 28% of the tree species in evergreen and deciduous forest types, respectively are, non-timber forest product yielding tree species, indicating potential high levels of supply of products to communities. Community dependence on non-timber forest products is significant, and it contributes to Rs. 1199 and Rs. 3561/household in the evergreen and deciduous zones, respectively. Given that the bulk of the forest grids in Uttara Kannada district are projected to undergo change, bulk of the species which provide multiple forest products are projected to experience die back and even mortality. Incorporation of climate change projections and impacts in forest planning and management is necessary to enable forest ecosystems to enhance resilience.

Effects of Salinity and Moisture Content on Aerobic Composting of Food Wastes (염분도와 수분함량이 음식폐기물의 호기성 퇴비화에 미치는 영향)

  • 박석환
    • Journal of Environmental Health Sciences
    • /
    • v.24 no.1
    • /
    • pp.120-131
    • /
    • 1998
  • This study was performed to define the physicochemical characteristics of food waste and food wastewater, and to find the effect of moisture content variation and salinity variation on aerobic composting for food wastes. In moisture content variation experiment, the samples of 2-1, 2-2, 2-3 and 24 were prepared by the moisture content of 83.8%, 70.9%, 64.8% and 45.1%, respectively. In salinity variation experiment, the samples of 3-1, 3-2, 3-3 and 3-4 were prepared by the salinity of 0.99%, 1. 69%, 1.75% and 2.34%, respectively. In both experiments, aerobic composting reactors were operated by the mode which was composed of half an hour's stirring and 2 hour's aeration per day, for 45 days. The followings are the conclusions that were derived from this study. 1. In the study of physicochemical characteristics of food waste and food wastewater, the values of pH were 4.19 and 3.96, the values of salinity were 0.91% and 1.17%, and the values of conductivity were 7.6 mS/cm and 18.2 mS/cm, respectively. 2. In food waste, the moisture content was 60.3%, organic compound content was 96.1%, total carbon was 48.0%, total nitrogen was 1.5%(therefore, C/N ratio was 32), and the concentration of total phosphorus was 1.34 mg/kg. 3. The time of temperature ascending was delayed, the highest temperature was lowered, the duration period of high temperature was shortened by the increasing of moisture content. In the higher moisture content, anaerobic condition was formed, bad smell was released, insects were gathered and multiplicated, and the reaction rate of composting was reduced. 4. In moisture content experiment, C/N ratios were changed from the range of 31.2-34.8 at the beginning phase to that of 20.4-28.4 at the last phase. 5. In salinity experiment, the reduction rate of volume was increased(40.3%) when the salinity was decreased(0.99%). Also, the reduction rate of mass was increased(51.8%) when the salinity was decreased(0.99%). This fact denotes that salinity hinders the process of composting. 6. the concentrations of total nitrogen and total phosphorus were increased from 0.74% to 1.10%, and from 0.82 mg/kg to 3.44 mg/kg, respectively when the salinity was decreased from 2.34% to 0.99%.

  • PDF

Distribution of Sulfate-reducing Bacteria in Landfill Leachate and their Role on Insolubilization of Heavy metals (폐기물매립지 침출수에서 황산염환원균의 분포와 중금속 불용화역할)

  • Jung, Kweon;Shin, Jai-Young;Jung, Il-Hyun;Takamizawa, Kazuhiro;Yoo, Young-Sik
    • Journal of Environmental Health Sciences
    • /
    • v.23 no.3
    • /
    • pp.27-39
    • /
    • 1997
  • This study, collaborated Gifu University, Japan, was performed to analyze chemical pollutants and microorganism and to clarify the distribution of sulfate-reducing bacteria and their insolubilization of heavy metal ions in leachates sampled seasonally between 1994 and 1996 from Nanjido waste landfill site, sampled 4 times between 1995 and 1996 from Pusan and Daejeon waste landfill site, and sampled 1 time between 1992 and 1994 from Hokkaido, Nagoya, Osaka and Hukuoka waste landfill site in Japan. The results were as follows: 1. The temperatures of internal leachate and leachate effluent were 40$\circ$C and 30$\circ$C, respectively, and the pH values of both leachates were about 8.0 at Nanjido waste landfill site. The concentration of SO$_4^{-2}$ gradually increased with the degree of stabilization and that of NO$_3$-N was detected in a part of sampling sites at one and half years, and in all sampling sites at 3 years after completion of landfill. 2. The organic substances in leachate of Nanjido waste landfill site decreased with the degree of stabilization and they were very fluctuated with measuring point and time. The concentration of organic substance and heavy metals in internal leachate were higher than in leachate effluent and those of Cd, Hg, and Pb were lower than detection limit except a part of samples in 1996. 3. APCs in internal leachate and leachate effluent were not much different and the minimum of APCs in internal leachate and leachate effluent were $1.0\times 10^4$/ml and $4.0\times 10^1$/ml, respectively. 4. The maximums of SRBs in Nanjido, Pusan, and Daejeon waste landfill site were 9180 MPN/ml, 24000 MPN/ml, and 348 MPN/ml, respectively and the maximum of SRBs in Japan waste landfill site was 9300 MPN/ml. 5. During 2-week-SRB culture, the values of MPN were high at 50$\circ$C for initial culture period and at 30$\circ$C for last culture period. MPN started to appear at first day and rapidly increased between 7th day and 9th day. 6. Cadmium and copper were insolubilized by SRB within 6 hr and iron and zinc were done within 48 hr. The rates of insolubilization of Cd, Cu, Fe, Zn, T-Cr were 100%, 99.5%, 95.0%, 99.8%, 16.1% after 48 hr treatment with SRB, respectively.

  • PDF

Characteristic of Al(III) Hydrolysis Specie Distribution on Coagulation Process (응집공정에서 발생하는 알루미늄 가수분해종 분포특성)

  • Song, Yu-Kyung;Jung, Chul-Woo;Hwangbo, Bong-Hyung;Sohn, In-Shik
    • Korean Chemical Engineering Research
    • /
    • v.44 no.5
    • /
    • pp.547-554
    • /
    • 2006
  • The overall objective of this research was to find out the role of rapid mixing conditions in the species of hydrolyzed Al(III) formed by Al(III) coagulants and to evaluate the distribution of hydrolyzed Al(III) species by coagulant dose and coagulation pH. When an Al(III) salt was added to water, monomeric Al(III), polymeric Al(III), precipitate Al(III) was formed by Al(III) hydrolysis. The method of hydrolyzed Al(III) species characterization analysis was based on timed spectrophotometer with ferron as a color developing reagent. The hydrolytic species were divided into monomer, polymer, precipitate from the reaction kinetics. And then, the color intensity for monomeric Al(III) was read 3 min after mixing. With standard Al solution containing monomeric Al(III) only, the Al-ferron color intensity slightly increased with until about 3 min. During the rapid mixing period, for purewater, formation of dissolved Al(III) (monomer and polymer) was similar to rapid mixing condition, but for raw water, the species of Al(III) hydrolysis showed different result. During the rapid mixing period, for high coagulant dose, Al-ferron reaction increases rapidly. The kinetic constants, Ka and Kb, derived from Al-ferron reaction. The kinetic constants followed very well the defined tendencies for coagulation condition. For pure water, when the rapid mixing time increased, the kinetic constants, Ka and Kb showed lower values. Also, for raw water, when the rapid mixing time increased, the kinetic constants, Ka and Kb showed lower values.

The Effects of Sterilization on Jakyakgamcho Decoction(Shaoyaogancao Decoction) Pharmacopuncture: an Investigation to Minimize Loss of Principal Components (멸균에 따른 작약감초약침의 지표 성분변화 및 해결방안)

  • Lee, Jong Hwan;Jun, Jae Yun;Lim, Su Jin;Kim, Hae Sol;Kim, Ho Sun;Bae, Young Hyeon;Lee, In Hee;Kim, Min Jeong;Kim, Eun Jee;Ha, In Hyuk;Lee, Jin Ho;Lee, Jae Woong
    • Journal of Acupuncture Research
    • /
    • v.31 no.4
    • /
    • pp.29-32
    • /
    • 2014
  • Objectives : Jakyakgamcho decoction is a traditional prescription known to be an effective pain control medication and muscle relaxant. For more localized treatment outcomes achieved in a shorter period of time, Jakyakgamcho decoction was reprocessed into a form of pharmacopuncture. An analysis of Jakyakgamcho decoction pharmacopuncture showed that there was a significant loss of paeoniflorin(Jakyak's index component). This study was designed to investigate ways to minimize this loss. Methods : After making changes to the processing methods of Jakyakgamcho decoction pharmacopuncture, we measured the quantity of paeoniflorin using high performance liquid chromatography(HPLC) for a before-and-after analysis Results : Paeoniflorin loss was observed 15 minutes after sterilization with $Na_2HPO_4$ at $121^{\circ}C$ Conclusions : It was found that paeoniflorin loss did not occur when pH was not controlled for during processing.

Antiinflammatory effect of ursodeoxycholic acid and mixture of natural extracts combined with ursodeoxycholic acid (UDCA를 함유한 생약추출물혼합제제의 항염효과에 관한 연구)

  • Rhyu, In-Cheol;Kim, Sang-Nyun;Chung, Chong-Pyoung
    • Journal of Periodontal and Implant Science
    • /
    • v.26 no.4
    • /
    • pp.1013-1021
    • /
    • 1996
  • There are many important factors in periodontal inflammation. $IL-1{\beta}$, $PGE_2$ and collagenase are predorminantly key factors. These inflammatory mediators induce gingival tissue and alveolar bone destruction. For the prevention and treatment of periodontal disease, it is necessary to inhibit $IL-1{\beta}$, $PGE_2$ production and collagenase activity. Ursodeoxycholic acid(UDCA) has immunomodulatory properties, and there is evidence that some natural extracts show antiinflammatory activity to some degree. The purpose of this study was to assess the inhibitory effect of UDCA and its mixture with natural extracts on $IL-1{\beta}$, $PGE_2$ production and collagenase activity. Accordingly we assessed the effect of UDCA and its mixture combined with some natural extracts on inhibition of $IL-1{\beta}$, $PGE_2$ production and collagenase activity. For the $IL-l{\beta}$ inhibition study, cultured cells were exposed to $25{\mu}g/ml$ LPS. $IL-1{\beta}$ activity was measured by $IL-1{\beta}$ enzyme immunoassay system. Human gingival fibroblasts were prepared and cells (l05/well) were seeded into culture plates. $rhIL-1{\beta}$ was added to induce $PGE_2$. The amount of $PGE_2$ in sample media was measured using enzyme immunoassay system. Crude collagenase was prepared from Porphyromonas gingivalis and collagenolytic activity was determined using a Collageno kit CLN-100. The test inhibitor was added to the assay mixture consisting of 0.1ml of 50mM Tris buffer(pH 7.5) and 0.2ml of substrate solution. UDCA and UDCA combined with natural extracts generally inhibited $IL-1{\beta}$ production. groups above 0.01% UDCA strongly inhibited $IL-l{\beta}$ synthesis. Both groups inhibited $IL-1{\beta}-induced$ synthesis of $PGE_2$. In low concentration, the degree of inhibition was as same as prednisolone. In high concentration, each group was superior to prednisolone. UDCA group and UDCA mixture group exerted a moderate inhibition of collagenolytic enzyme. The present study suggested that UDCA and its mixture with natural extracts could be further investigated as antiinflammatory drug for periodontal disease.

  • PDF

Degradation rate of several types of Calcium Polyphosphate;Long term results (다양한 형태의 다공질 Calcium Polyphosphate의 생분해성에 관한 장기적인 연구)

  • Yang, S.M.;Seol, Y.J.;Kye, S.B.;Lee, I.K.;Lee, C.W.;Kim, S.Y.;Lee, Yong-Mu;Ku, Y.;Han, S.B.;Chung, C.P.;Choi, S.M.;Rhyu, I.C.
    • Journal of Periodontal and Implant Science
    • /
    • v.33 no.2
    • /
    • pp.301-310
    • /
    • 2003
  • The purpose of this study is to evaluate the biocompatibility and the biorsorbability of several types of calcium polyphosphate made through change of manufacturing process for 12 month. To solve limitation of calcium phosphate, we developed a new ceramic, Calcium Polyphosphate(CPP), and report the biologic response to CPP in extraction sites of beagle dog. Porous CPP blocks were prepared by condensation of anhydrous $Ca(H_2PO_4)_2$ to form non-crystalline $Ca(PO_3)_2$ and then milled to produce CPP powder. CPP powder, CPP block, and CPP granules added with $Na_2O$ were implanted in extraction sockets and histologic observation were performed at 12 months later. Like 3 months results, histologic observation at 12 months revealed that CPP matrix were mingled with and directly apposed to new bone without any adverse tissue reaction, CPP powder show direct bony contact, but new bone formation and fibrous tissue encapsulation showed in CPP block. 10% $Na_2O$ CPP granules show more inflammatory cells infiltration around graft materials compared at 3 month, but 15% $Na_2O$ CPP granules show less. This result revealed that regardless of addition of $Na_2O$, CPP had a high affinity for bone and had been resorbed slowly. From this results, it was suggested that CPP is promising ceramic as a bone substitute and addition of $Na_2O$ help biodegradation but optimal concentration of $Na_2O$ and other additive component to increase degradation rate should be determined in further study.

Influence of sandblasting and primer on shear bond strength of resin cement to zirconia (샌드블라스팅과 프라이머가 지르코니아와 레진시멘트의 전단결합강도에 미치는 영향)

  • Lee, Jung-Haeng;Kim, Hyeong-Seob;Pae, Ah-Ran;Woo, Yi-Hyung
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.49 no.1
    • /
    • pp.49-56
    • /
    • 2011
  • Purpose: The aim of this study was to evaluate the effect of mechanical, chemical surface treatments on the zirconia-to-resin cement shear bond strength (SBS). Materials and methods: Eighty zirconia discs (Lava, 3M ESPE) and eighty zirconia/alumina composite (Zirace, Acucera) were embedded in an epoxy resin base. Zirconia discs were randomly divided in to four treatment groups(10 for each manufacturer): $50\;{\mu}m$ $Al_2O_3$ sandblasting (S50), $110\;{\mu}m$ $Al_2O_3$ sandblasting (S110), $50\;{\mu}m$ $Al_2O_3$ and primer (Z-Prime Plus, Bisco Inc) (S50z) and $110\;{\mu}m$ $Al_2O_3$ and primer (Z-Prime Plus) (S110z). Two resin-based luting cements (Calibra, Panavia F) were used to build 2 mm diameter cylinders onto the zirconia. After 24 h of storage in water, SBS testing was evaluate using a universal testing machine. Bond strength data were analyzed with one-way ANOVA, two-way ANOVA test and post hoc comparison was done using Tukey test (${\alpha}$ = .05). Results: Groups using primer showed the high shear bond strength. The groups that did not use primer presented lower shear bond strengths. Conclusion: The use of primer (Z-Prime Plus, Bisco) had significantly higher shear bond strengths.

Investigating the Au-Cu thick layers Electrodeposition Rate with Pulsed Current by Optimization of the Operation Condition

  • Babaei, Hamid;Khosravi, Morteza;Sovizi, Mohamad Reza;Khorramie, Saeid Abedini
    • Journal of Electrochemical Science and Technology
    • /
    • v.11 no.2
    • /
    • pp.172-179
    • /
    • 2020
  • The impact of effective parameters on the electrodeposition rate optimization of Au-Cu alloy at high thicknesses on the silver substrate was investigated in the present study. After ensuring the formation of gold alloy deposits with the desired and standard percentage of gold with the cartage of 18K and other standard karats that should be observed in the manufacturing of the gold and jewelry artifacts, comparing the rate of gold-copper deposition by direct and pulsed current was done. The rate of deposition with pulse current was significantly higher than direct current. In this process, the duty cycle parameter was effectively optimized by the "one factor at a time" method to achieve maximum deposition rate. Particular parameters in this work were direct and pulse current densities, bath temperature, concentration of gold and cyanide ions in electrolyte, pH, agitation and wetting agent additive. Scanning electron microscopy (SEM) and surface chemical analysis system (EDS) were used to study the effect of deposition on the cross-sections of the formed layers. The results revealed that the Au-Cu alloy layer formed with concentrations of 6gr·L-1 Au, 55gr·L-1 Cu, 24 gr·L-1 KCN and 1 ml·L-1 Lauryl dimethyl amine oxide (LDAO) in the 0.6 mA·cm-2 average current density and 30% duty cycle, had 0.841 ㎛·min-1 Which was the highest deposition rate. The use of electrodeposition of pure and alloy gold thick layers as a production method can reduce the use of gold metal in the production of hallow gold artifacts, create sophisticated and unique models, and diversify production by maintaining standard karats, hardness, thickness and mechanical strength. This will not only make the process economical, it will also provide significant added value to the gold artifacts. By pulsating of currents and increasing the duty cycle means reducing the pulse off-time, and if the pulse off-time becomes too short, the electric double layer would not have sufficient growth time, and its thickness decreases. These results show the effect of pulsed current on increasing the electrodeposition rate of Au-Cu alloy confirming the previous studies on the effect of pulsed current on increasing the deposition rate of Au-Cu alloy.