• Title/Summary/Keyword: high magnetic fields

Search Result 412, Processing Time 0.023 seconds

Low-ε Static Probe Development for 15N-1H Solid-state NMR Study of Membrane Proteins for an 800 MHz NB Magnet

  • Park, Tae-Joon;Choi, Sung-Sub;Jung, Ji-Ho;Park, Yu-Geun;Kim, Yongae
    • Bulletin of the Korean Chemical Society
    • /
    • v.34 no.3
    • /
    • pp.823-826
    • /
    • 2013
  • A low-${\varepsilon}$ solid-state NMR(Nuclear Magnetic Resonance) probe was developed for the spectroscopic analysis of two-dimensional $^{15}N-^1H$ heteronuclear dipolar coupling in dilute membrane proteins oriented in hydrated and dielectrically lossy lipid environments. The system employed a 800 MHz narrow-bore magnet. A solenoid coil strip shield was used to reduce deleterious RF sample heating by minimizing the conservative electric fields generated by the double-tuned resonator at high magnetic fields. The probe's design, construction, and performance in solid-state NMR experiments at high magnetic fields are described here. Such high-resolution solid-state NMR spectroscopic analysis of static oriented samples in hydrated phospholipid bilayers or bicelles could aid the structural analysis of dilute biological membrane proteins.

An algorithm to infer the central location of a solenoid coil for the mapping process based on harmonic analysis (조화해석 기반의 맵핑을 위한 솔레노이드 코일의 중심위치 추론 알고리즘)

  • Lee, Woo-Seung;Ahn, Min-Cheol;Hahn, Seung-Yong;Ko, Tae-Kuk
    • Progress in Superconductivity and Cryogenics
    • /
    • v.14 no.1
    • /
    • pp.14-19
    • /
    • 2012
  • Shimming, active and/or passive, is indispensable for most MR (magnetic resonance) magnets where homogeneous magnetic fields are required within target spaces. Generally, shimming consists of two steps, field mapping and correcting of fields, and they are recursively repeated until the target field homogeneity is reached. Thus, accuracy of the field mapping is crucial for fast and efficient shimming of MR magnets. For an accurate shimming, a "magnetic" center, which is a mathematical origin for harmonic analysis, must be carefully defined, Although the magnetic center is in general identical to the physical center of a magnet, it is not rare that both centers are different particularly in HTS (high temperature superconducting) magnets of which harmonic field errors, especially high orders, are significantly dependent on a location of the magnetic center. This paper presents a new algorithm, based on a field mapping theory with harmonic analysis, to define the best magnetic center of an MR magnet in terms of minimization of pre-shimming field errors. And the proposed algorithm is tested with simulation under gaussian noise environment.

Characteristics of Electric and Mgnetic Field Profiles from Transformer and GIS Perimeters (변압기와 GIS 주변에서 전장과 자장 분포의 특성)

  • 이복희;이승칠;안창환;길형준;장석훈;박동화;곽희로
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.12 no.3
    • /
    • pp.51-58
    • /
    • 1998
  • This paper deals with the power frequency electric and magnetic profiles from transformer and gas-insulated swichgear(GIS) perimeters in the indoor power substation. Measurements of electric and magnetic field magnitudes were carried out by using single axis and three axes field meters at a height of 1[m]. The resultant electric and magnetic field profiles measured in the vicinity of the transformer were displayed as a 2-dimensional plot. The electric fields intensity are relatively low value of about 2.3~9[V/m], and the magnetic fields intensity range from 0.3 to [$20.3\mu$T]. Also, in the GIS perimeter the electric fields intensity are in the range of 2.2~2.5[V/m], and the high magnetic fields are largely localized to the intermediate section of the GIS and their amplitudes are [$1.2~39.5\mu$T]. Metal enclosures of transform and GIS play a role in reducing the electric field, and the magnetic fields are characterized by a rapid decrease with distance from the transformer and GIS enclosures.

  • PDF

Measurement and Analysis of Magnetic Fields and Induced Voltages Caused by Home Appliances (가정용 전기기구에서 발생하는 자장과 유도전압의 측정과 분석)

  • 이복희;이동문;장영태;장근철;엄주홍;강성만;이승칠;박정용
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.16 no.6
    • /
    • pp.51-59
    • /
    • 2002
  • This paper deals with the measurement and analysis of the induced voltages and magnetic fields caused by the operation of home appliances. The induced voltage and magnetic field measurement circuit used in this work consists of the induction coil, the operational preamplifier and the active integrator. Television set and monitors for personal computer cause strong magnetic fields rich in harmonics and high induced voltages by using the switching power suppliers. The strong magnetic field intensity and high induced voltage were created by 14" television set, and their values are 2.1 [$\mu$Tp-p]and 140 [mVp-p]at the distance of 0.4 [m], respectively. However, the induced voltage per unit magnetic field intensity was created by 17" monitor for personal computer and the measured data was approximately 560[mV/$\mu$T]at the same distance. distance.

NUMERICAL SOLUTION OF AN INTEGRO-DIFFERENTIAL EQUATION ARISING IN OSCILLATING MAGNETIC FIELDS

  • PARAND, KOUROSH;DELKHOSH, MEHDI
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • v.20 no.3
    • /
    • pp.261-275
    • /
    • 2016
  • In this paper, an integro-differential equation which arises in oscillating magnetic fields is studied. The generalized fractional order Chebyshev orthogonal functions (GFCF) collocation method used for solving this integral equation. The GFCF collocation method can be used in applied physics, applied mathematics, and engineering applications. The results of applying this procedure to the integro-differential equation with time-periodic coefficients show the high accuracy, simplicity, and efficiency of this method. The present method is converging and the error decreases with increasing collocation points.

The Influence of External Magnetic Field on Transport Loss in a Bi-2223 tape (외부자계가 Bi-2223테이프의 통전손실에 미치는 영향)

  • 김창완;한형주;류경우;최병주
    • Proceedings of the Korea Institute of Applied Superconductivity and Cryogenics Conference
    • /
    • 2001.02a
    • /
    • pp.169-171
    • /
    • 2001
  • The transport loss of a Bi-2223 tape exposed to external magnetic field was investigated. The results show that the transport loss is independent on voltage lead arrangements in case the magnetization loss is compensated. An serious increase of the transport loss due to external magnetic fields is observed. The loss is described well by dynamic resistance loss in relatively high fields, but another mechanism than the dynamic resistance must be responsible for the increase of the loss in low fields. The transport loss is also dependent strongly on the orientation of the applied field.

  • PDF

High field HTS insert coils : Status and key technical issue

  • Schwartz, Justin
    • 한국초전도학회:학술대회논문집
    • /
    • v.10
    • /
    • pp.22-22
    • /
    • 2000
  • The discoveries of high temperature superconductors received great attention due to their high critical temperatures. These materials also exhibit extremely high critical magnetic fields and high critical current density at low temperature, high magnetic field. Thus, they are the most promising materials for superconducting magnets above 20 T. In this talk, progress in the development of HTS materials and insert coils at the National High Magnetic Field Laboratory will be reviewed. In 1999, a Bi-2212 stack of double pancakes generated 3 T in a 19 T background field. These results will be reviewed in terms of implications for future systems. Individual double pancakes of Bi-2223 have also been tested and their performance will also be discused. The present goal of a 57 system will be presented and the key technical requirements for larger, higher field systems will be addressed. It will be shown that in addition to increased critical current density, improved mechanical performance (stain resistanced) is necessary for high field systems. Furthemore, improvements in the conductor n-value will improve prospects for operational systems.

  • PDF

Magnetic beads separation using a multi-layered microfluidic channel (다층구조의 미세유체채널을 이용한 자성입자 분리)

  • Lee, Hye-Lyn;Song, Suk-Heung;Jung, Hyo-Il
    • Proceedings of the KSME Conference
    • /
    • 2008.11a
    • /
    • pp.1685-1686
    • /
    • 2008
  • This paper presents the design and experiment results of a multi-layered microsystem for magnetic bead applications. The magneto-microfluidic device is designed for capable of separating magnetic beads. In the presence of the magnetic field, magnetic beads are attracted and moved to high gradient magnetic fields. A multi-layered microfluidic channel consists of top and bottom layers in order to separate magnetic beads in the vertical direction. Our channel is easily integrated magnetic cell sorter, especially on-chip microelectromagnet or permanent magnet device. Fast separation of magnetic beads in top and bottom channels can be used in high throughput screening to monitor the efficiency of blood and drug compounds.

  • PDF

Analysis of Worker Exposure Space according to Distribution of Electromagnetic Field of Generator (발전기의 전자기장 분포 특성에 따른 작업자 노출공간 분석)

  • Seong, Minyoung;Kim, Doo-Hyun;Kim, Seungtae
    • Journal of the Korean Society of Safety
    • /
    • v.36 no.4
    • /
    • pp.20-28
    • /
    • 2021
  • With an increase in the commercialization of electricity, and the development of advanced and large electric devices and various wireless radio wave services, concerns over the effects of electromagnetic fields on human health have increased. Accordingly, the World Health Organization encouraged the development of international standards by establishing the 'International Electromagnetic Fields Project' in 1996 based on studies on the harmful effects of electromagnetic fields on the human body. Moreover, the National Institute of Environmental Health Sciences (NIEHS) classified electromagnetic fields as possible carcinogens under Group 2B category, even though they have been found to have a weak correlation with those effects on human health. Mid-to-large-sized electric facilities used at industrial sites mostly adopt a commercial frequency of 60 Hz, and workers handling these facilities are exposed to such extremely low frequency (ELF) fields for a long time. A previous study suggested that exposure to ELF electromagnetic fields with frequency ranges from 0 to 300 Hz, even for a short time, at densities higher than 100 μT may have harmful effects on human body as it affects the activation of nerve cells in the central nervous system by inducing an electric field and current and stimulating muscles and the nervous system in the body. Such studies, however, focused on home appliances used by ordinary people, and research on facilities utilizing high-capacity current and operated by workers at industrial sites is lacking. Therefore, in this study, a 3000 kilowatt generator, which is a high-capacity electric facility employed at industrial sites, was investigated, and the size of the magnetic fields generated during its no-load and high-load operations per distance to produce a map was measured to reveal spots deemed hazardous according to domestic and international exposure standards. The findings of this study is expected to alleviate workers' anxiety about the harmful effects of magnetic fields on their body and to minimize the level of exposure during operations.

Eddy Current Effects on the High Density Magnetic Recording System (고밀도 자기기록 시스템에서 발생하는 와전류에 의한 자기 기록 필드 영향 분석)

  • Won, Hyuk;Park, Gwan-Soo
    • Journal of the Korean Magnetics Society
    • /
    • v.16 no.2
    • /
    • pp.149-156
    • /
    • 2006
  • The frequency of the recording current and the rotating speed of the recording media are Increase for the high densities in perpendicular magnetic recording system with high conductive pole tip head and soft magnetic under-layer. In the paper, the frequency Induced eddy current and velocity induced eddy currents are analyzed by non-linear 3-dimensional finite element analysis. It it turned out that the frequency induced eddy current decreases the amplitude of the recording fields, whereas the velocity induced eddy current only distorts the distribution of the recording fields in the recording media.