• Title/Summary/Keyword: high intensity wind

Search Result 136, Processing Time 0.025 seconds

Characteristics of Temperature Variation in Urban and Suburban Areas During Winter (겨울철 도시지역과 교외지역의 기온변화 특성)

  • Kwon, Sung-Ill;Kim, Jin-Soo;Park, Jong-Hwa;Oh, Kwang-Young;Song, Chul-Min
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.50 no.2
    • /
    • pp.55-63
    • /
    • 2008
  • We investigated characteristics of temperature variation in urban and suburban areas(e.g., paddy field, upland, park, residential area) and urban heat island(UHI) during winter(December 2005 to February 2006). The daily maximum air temperature was not significantly different between suburban and urban areas, whereas the daily minimum air temperatures were significantly lower in the suburban areas than that in the residential area. The wind speed in the urban park(0.3 m/s) was much lower than that in the paddy fields(2.3 m/s), likely due to an urban canopy layer formed by high buildings. The UHI intensity was represented by differences in daily minimum temperatures between urban residential and paddy field areas. The UHI intensity($4.1^{\circ}C$) in winter was larger than that($2.6^{\circ}C$) in summer. This may be because a stable boundary layer develops in the winter, and thereby this inhibits diffusion of heat from surface.

Characteristic Variations of Upper Jet Stream over North-East Asian Region during the Recent 35 Years (1979~2013) Based on Four Reanalysis Datasets (재분석자료들을 이용한 최근 35년(1979~2013) 동북아시아 상층제트의 변동특성)

  • So, Eun-Mi;Suh, Myoung-Seok
    • Atmosphere
    • /
    • v.25 no.2
    • /
    • pp.235-248
    • /
    • 2015
  • In this study, we analyzed the three dimensional variations (latitude, longitude, and height of Jet core) and wind speed of upper Jet stream in the East Asian region using recent 35 years (1979~2013) of four reanalysis data (NCEP-R2, MERRA, ERA-Interim. and JRA-55). Most of Jet core is located in $30.0{\sim}37.5^{\circ}N$ and $13.0{\sim}157.5^{\circ}E$ although there are slight differences among the four reanalysis data. The wind speed differences among reanalysis are about $3m\;s^{-1}$ regardless of seasons, the weakest in NCEP-R2 and the strongest in JRA-55. Although significance level is not high, most of reanalysis showed that the Jet core has a tendency of southward moving during spring and winter, but moving northward during summer and fall. This amplified seasonal variation of Jet core suggests that seasonal variations of weather/climate can be increased in the East Asian region. The longitude of Jet core has a tendency of systematically westward moving and decreasing of zonal variations regardless of averaging methods and reanalysis data. In general, the Jet core shows a tendency of moving south-west-ward and upward, getting intensified during spring and winter regardless of the reanalysis data. However, the Jet core shows a tendency of moving westward and downward, and getting weakened during summer. In fall, there were no distinctive trends not only in wind speed but also three dimensional locations compared to other seasons. Although the significance levels are not high and variation patterns are slightly different according to the reanalysis data, our findings are more or less different from the previous results. So, more works are needed to clarify the three dimensional variation patterns of Jet core over the East Asian region as a result of global warming.

Characteristics of Malodor Pollutants and Their Dispersion Measured in Several Industrial Source Regions in Yangsan (양산시 산업단지에서 측정한 악취물질의 농도 분포 특성 및 대기확산 모델링)

  • Song, Sang-Keun;Shon, Zang-Ho;Kim, Yoo-Keun;Park, Heung-Jai
    • Journal of Environmental Science International
    • /
    • v.18 no.10
    • /
    • pp.1103-1114
    • /
    • 2009
  • In this study, the environmental behavior of malodor pollutants (MPs: $H_2S$, $CH_3SH$, DMS, and DMDS) was investigated around areas influenced by strong anthropogenic processes based on observations and modeling study (a CALPUFF dispersion model). The MP emission concentrations were measured from 8 industrial source regions (tire plants (S1-S3), waste water disposal plant (S4), and oil refinery (S5) in an urban center area and paper mill/incineration plant (S6) and livestock feedlots (S7-S8) in Ungsang area) in Yangsan city during a fall period in 2008 (21 October 2008). Overall, the most MPs emitted from the urban center area were found to affect the malodor pollution in their downwind areas during early morning (06:00 LST) and nighttime (18:00 and 21:00 LST), compared with those in the Ungsang area. For malodor intensity, the most MPs in the urban center area (especially S1 and S2) were found to be a significant contributor, whereas $CH_3SH$ and $H_2S$ in the Ungsnag area (especially S6) were the dominant contributor. The model study showed agreement in the spatial distributions of simulated MPs with those of the observations. The largest impact of MPs in the urban center area on the malodor pollution in its residential areas occurred at S1, S2, and S3 sites during nighttime, while that of MPs in the Ungsang area occurred at S6 and S8 sites. This may be caused mainly by the high MP emissions and in part by wind conditions (prevailing northeasterly winds with low wind speeds of 2-3 m/s).

The Characteristics of Disaster by Track of Typhoon Affecting the Korean Peninsula (한반도 영향 태풍의 이동경로에 따른 재해 특성)

  • Ahn, Suk-Hee;Kim, Baek-Jo;Lee, Seong-Lo;Kim, Ho-Kyung
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.8 no.3
    • /
    • pp.29-36
    • /
    • 2008
  • The purpose of this study is to examine the characteristics of disaster associated with typhoon passed through the sea areas excluding the South Sea around the Korean Peninsula. First, Korean peninsula-affecting typhoons were divided into their track patterns of passing through the Korean West Sea and East Sea based on typhoon data from 1951 to 2006 provided by Regional Specialized Meteorological Center(RSMC)-Tokyo. Then, annual and monthly frequency and intensity of typhoon in each pattern was examined. In particular, typhoon related damages during the period of 1973 to 2006 were analyzed in each case. Results showed that since early 1970, in the West Sea case, typhoon becomes weaker without significant change in frequency, while in the East Sea case, it becomes stronger with an increasing trend. It is also found that the high amount of typhoon damage results from the submergence of houses and farmlands in the East Sea case, while it is due to the breakdown of houses, ships, roads and bridges in the West Sea case. In addition, it is revealed from the analysis of rainfall and maximum wind speed data associated with typhoon disasters that the main cause of occurring typhoon disasters seem to be qualitatively related to strong wind in the West Sea case and heavy rainfall in the East Sea case.

Development and Evaluation of the High Resolution Limited Area Ensemble Prediction System in the Korea Meteorological Administration (기상청 고해상도 국지 앙상블 예측 시스템 구축 및 성능 검증)

  • Kim, SeHyun;Kim, Hyun Mee;Kay, Jun Kyung;Lee, Seung-Woo
    • Atmosphere
    • /
    • v.25 no.1
    • /
    • pp.67-83
    • /
    • 2015
  • Predicting the location and intensity of precipitation still remains a main issue in numerical weather prediction (NWP). Resolution is a very important component of precipitation forecasts in NWP. Compared with a lower resolution model, a higher resolution model can predict small scale (i.e., storm scale) precipitation and depict convection structures more precisely. In addition, an ensemble technique can be used to improve the precipitation forecast because it can estimate uncertainties associated with forecasts. Therefore, NWP using both a higher resolution model and ensemble technique is expected to represent inherent uncertainties of convective scale motion better and lead to improved forecasts. In this study, the limited area ensemble prediction system for the convective-scale (i.e., high resolution) operational Unified Model (UM) in Korea Meteorological Administration (KMA) was developed and evaluated for the ensemble forecasts during August 2012. The model domain covers the limited area over the Korean Peninsula. The high resolution limited area ensemble prediction system developed showed good skill in predicting precipitation, wind, and temperature at the surface as well as meteorological variables at 500 and 850 hPa. To investigate which combination of horizontal resolution and ensemble member is most skillful, the system was run with three different horizontal resolutions (1.5, 2, and 3 km) and ensemble members (8, 12, and 16), and the forecasts from the experiments were evaluated. To assess the quantitative precipitation forecast (QPF) skill of the system, the precipitation forecasts for two heavy rainfall cases during the study period were analyzed using the Fractions Skill Score (FSS) and Probability Matching (PM) method. The PM method was effective in representing the intensity of precipitation and the FSS was effective in verifying the precipitation forecast for the high resolution limited area ensemble prediction system in KMA.

A Study of Urban Heat Island in Chuncheon Using WRF Model and Field Measurements (관측과 기상모델을 이용한 춘천지역의 도시열섬현상 연구)

  • Lee, Chong-Bum;Kim, Jea-Chul;Jang, Yun-Jung
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.28 no.2
    • /
    • pp.119-130
    • /
    • 2012
  • Heat island phenomena in Chuncheon (Korea) were investigated using air temperature measured by automatic weather stations and temperature dataloggers located at rural and urban sites. Numerical simulation of the phenomena was performed using Weather Research and Forecasting Urban Canopy Model (WRF-UCM) and results were compared with the observation. The model was initialized with NCEP/FNL data. The horizontal resolution of the fine domain is 0.33 km. The results of observational analyses show that the intensity of heat island was significantly higher during the nighttime than during the daytime. The highest measured temperature difference between rural and urban site is $3.49^{\circ}C$ and average temperature difference varies between 1.4 and $1.9^{\circ}C$. Good agreement was found between the simulated and observed temperatures. However, significantly overestimated wind speed was found at the urban sites. The linear regression analysis between observed and simulated temperature shows high correlation coefficient 0.96 for urban and 0.94 for rural sites while for wind speed, a very low correlation coefficient was found, 0.30 and 0.55 respectively.

The Structural Design of Tianjin Goldin Finance 117 Tower

  • Liu, Peng;Ho, Goman;Lee, Alexis;Yin, Chao;Lee, Kevin;Liu, Guang-lei;Huang, Xiao-yun
    • International Journal of High-Rise Buildings
    • /
    • v.1 no.4
    • /
    • pp.271-281
    • /
    • 2012
  • Tianjin Goldin Finance 117 tower has an architectural height of 597 m, total of 117 stories, and the coronation of having the highest structural roof of all the buildings under construction in China. Structural height-width ratio is approximately 9.5, exceeding the existing regulation code significantly. In order to satisfy earthquake and wind-resisting requirements, a structure consisting of a perimeter frame composed of mega composite columns, mega braces and transfer trusses and reinforced concrete core containing composite steel plate wall is adopted. Complemented by some of the new requirements from the latest Chinese building seismic design codes, design of the super high-rise building in high-intensity seismic area exhibits a number of new features and solutions to professional requirements in response spectrum selection, overall stiffness control, material and component type selection, seismic performance based design, mega-column design, anti-collapse and stability analysis as well as elastic-plastic time-history analysis. Furthermore, under the prerequisite of economic viability and a series of technical requirements prescribed by the expert review panel for high-rise buildings exceeding code limits, the design manages to overcome various structural challenges and realizes the intentions of the architect and the client.

Drag Reduction of a Circular Cylinder With O-rings (O-ring 을 이용한 원주의 저항감소에 관한 실험적 연구)

  • Lim, Hee-Chang;Lee, Sang-Joon
    • Proceedings of the KSME Conference
    • /
    • 2003.04a
    • /
    • pp.2089-2094
    • /
    • 2003
  • The flow around a circular cylinder was controlled by attaching O-rings to reduce drag force acting on the cylinder. Four experimental models were tested in this study; one smooth cylinder of diameter D (D=60mm) and three cylinders fitted with O-rings of diameters d=0.0167D, 0.05D and 0.067D with pitches of PPD=1D, 0.5D and 0.25D. The drag force, mean velocity and turbulent intensity profiles in the near wake behind the cylinders were measured for Reynolds numbers based on the cylinder diameter in the range of $Re_D=7.8{\times}10^3{\sim}1.2{\times}10^5$. At $Re_D=1.2{\times}10^5$, the cylinder fitted with O-rings of d=0.0167D in a pitch interval of 0.25D shows the maximum drag reduction of about 5.4%, compared with the smooth cylinder. The drag reduction effect of O-rings of d=0.067D is not so high. For O-ring circulars, as the Reynolds number increases, the peak location of turbulence intensity shifts downstream and the peak magnitude is decreased. Flow field around the cylinders was visualized using a smoke-wire technique to see the flow structure qualitatively. The size of vortices and vortex formation region formed behind the O-ring cylinders are smaller, compared with the smooth cylinder.

  • PDF

A Study on the Time-Series Characteristics of Photochemical Smog Materials (광화학스모그물질의 시계열특성에 관한 연구)

  • 윤정임;김선태;김정욱
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.9 no.3
    • /
    • pp.183-190
    • /
    • 1993
  • For the efficient control of photochemical smog materials, the researches on the change patterns of photochemical smog precursors are indispensable. In this study, a time-series analysis was performed for the auto-monitoring data of Kwanghwamun and Jamsil stations in 1990, and the change patterns of photochemical smog materials were studied. Especially, auto-correlation coefficients were analyzed to investigate the cyclic characteristics of pollutants in question and cross-correlation coefficients to investigate the correlations between pollutants adjusted for time lag and between $O_3$ and meteorological factors. Results of researches are as follows: First, in the case of NO and $NO_2$ intimately related to human activities, 12-hour cycle was prevalent. But $O_3$ showed 24-hour cycle. Second, NO showed a relatively high correlation with $O_3$ and usually developed into $O_3$ 5 to 7 hours later. Third, temperature, insolation intensity, and wind speed showed a positive correlation with $O_3$ while relative humidity a negative correlation.

  • PDF

A Study on the Change of Heavy Snow Strength by SST in Influence of Continental Polar Air Mass

  • Park, Geon-Young;Ryu, Chan-Su
    • Journal of Integrative Natural Science
    • /
    • v.7 no.1
    • /
    • pp.39-44
    • /
    • 2014
  • The results of the synoptic meteorological analysis showed that when the cold and dry continental high pressure was extended, heavy snow occurred at dawn when the upper atmosphere cooled. In particular, when the continental high pressure was extended and the upper pressure trough passed through, heavy snow occurred due to the convergence region formed in the west coast area, sometimes in the inland of the Honam area. In addition, it was verified that the changes in the humidity coefficients in the upper and lower layers are important data for the determination of the probability, start/end and intensity of heavy snow. However, when the area was influenced by the middle-latitude low pressure, the heavy snow was influenced by the wind in the lower layer (925 hPa and 850 hPa), the equivalent potential temperature, the convergence field, the moisture convergence and the topography. In Case 2010 (30 December 2010), OSTIA had the best numerical simulation with diverse atmospheric conditions, and the maximum difference in the numerically simulated snowfall between NCEP/NCAR SST and OSTIA was 20 cm. Although there was a regional difference in the snowfall according to the difference in the SST, OSTIA and RTG SST numerical tests, it was not as significant as in the previous results. A higher SST led to the numerical simulation of larger snowfall, and the difference was greatest near Buan in the west coast area.