Browse > Article
http://dx.doi.org/10.14191/Atmos.2015.25.2.235

Characteristic Variations of Upper Jet Stream over North-East Asian Region during the Recent 35 Years (1979~2013) Based on Four Reanalysis Datasets  

So, Eun-Mi (Department of Atmospheric Science, Kongju National University)
Suh, Myoung-Seok (Department of Atmospheric Science, Kongju National University)
Publication Information
Atmosphere / v.25, no.2, 2015 , pp. 235-248 More about this Journal
Abstract
In this study, we analyzed the three dimensional variations (latitude, longitude, and height of Jet core) and wind speed of upper Jet stream in the East Asian region using recent 35 years (1979~2013) of four reanalysis data (NCEP-R2, MERRA, ERA-Interim. and JRA-55). Most of Jet core is located in $30.0{\sim}37.5^{\circ}N$ and $13.0{\sim}157.5^{\circ}E$ although there are slight differences among the four reanalysis data. The wind speed differences among reanalysis are about $3m\;s^{-1}$ regardless of seasons, the weakest in NCEP-R2 and the strongest in JRA-55. Although significance level is not high, most of reanalysis showed that the Jet core has a tendency of southward moving during spring and winter, but moving northward during summer and fall. This amplified seasonal variation of Jet core suggests that seasonal variations of weather/climate can be increased in the East Asian region. The longitude of Jet core has a tendency of systematically westward moving and decreasing of zonal variations regardless of averaging methods and reanalysis data. In general, the Jet core shows a tendency of moving south-west-ward and upward, getting intensified during spring and winter regardless of the reanalysis data. However, the Jet core shows a tendency of moving westward and downward, and getting weakened during summer. In fall, there were no distinctive trends not only in wind speed but also three dimensional locations compared to other seasons. Although the significance levels are not high and variation patterns are slightly different according to the reanalysis data, our findings are more or less different from the previous results. So, more works are needed to clarify the three dimensional variation patterns of Jet core over the East Asian region as a result of global warming.
Keywords
Jet core; reanalysis data; three dimensional variations; intensity; East Asian region;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Archer, C. L., and K. Caldeira, 2008: Historical trends in the jet streams. Geophys. Res. Lett., 35, L08803.
2 Chang, C. P., Z. Wang, and H. Hendon, 2006: The Asian winter monsoon. Springer, 89-127.
3 Chang, E. K. M., Y. Guo, and X. Xia, 2012: CMIP5 multimodel ensemble projection of storm track change under global warming. J. Geophys. Res., 117, D23118, doi:10.1029/2012JD018578.   DOI
4 Chun, K.-E., 1981: An analysis of influences of Jet Stream over Korea. J. Sejung Univ., 8, 179-192.
5 Davis, S. M., and K. H. Rosenlof, 2012: A multidiagnostic intercomparison of tropical-width time series using reanalyses and satellite observations. J. Climate, 25, 1061-1078.   DOI
6 Dee, D. P., and Coauthors, 2011: The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Quart. J. Roy. Meteor. Soc., 137, 553-597.   DOI   ScienceOn
7 Dell'Aquila, A., V. Lucarini, P. M. Ruti, and S. Calmanti, 2005: Hayashi spectra of the northern hemisphere mid-latitude atmospheric variability in the NCEPNCAR and ECMWF reanalyses. Clim. Dynam., 25, 639-652.   DOI
8 Ebita, A., and Coauthors, 2011: The Japanese 55-year Reanalysis "JRA-55": an interim report. Sci. Online Lett. Atmos., 7, 149-152.
9 Fu, Q., C. M. Johanson, J. M. Wallace, and T. Reichler, 2006: Enhanced mid-latitude tropospheric warming in satellite measurements. Science, 312, 1179, doi:10.1126/science.1125566.   DOI
10 Hansen, J., M. Sato, R. Ruedy, K. Lo, D. W. Lea, and M. Medina-Elizade, 2006: Global temperature change. Proc. Natl. Acad. Sci., 103, 14288-14293, doi:10.1073/pnas.0606291103.   DOI
11 Holton, J. R., 1992: An introduction to dynamic meteorology. Elsevier, New York, 511 pp.
12 Hu, Y., and Q. Fu, 2007: Observed poleward expansion of the Hadley circulation since 1979. Atmos. Chem. Phys. Disc., 7, 9367-9384.   DOI
13 Kanamitsu, M., W. Ebisuzaki, J. Woollen, S.-K. Yang, J. J. Hnilo, M. Fiorino, and G. L. Potter, 2002: The NCEPDOE AMIP-II Reanalysis (R-2). Bull. Amer. Meteor. Soc., 83, 1631-1643.   DOI
14 Kim, B.-M., E.-H. Jung, G.-H. Lim, and H.-K. Kim, 2014: Analysis on winter atmosphereic variability related to arctic warming. Atmosphere, 24, 131-140 (in Korean with English abstract).   DOI
15 Koch, P., H. Wernli, and H. C. Davies, 2006: An eventbased jet stream climatology and typology. Int. J. Climatol., 26, 283-301.   DOI
16 Krishnamurti, T. N., 1961: The subtropical jet stream of winter. J. Atmos. Sci., 18, 172-191.
17 Lee, Y.-Y., G.-H. Lim, and J.-S. Kug, 2009: Influence of the East Asian winter monsoon on the storm track activity over the North Pacific. J. Geophys. Res., 115, D09102, doi: 10.1029/2009JD012813.   DOI
18 Lewis, J. M., 2003: Ooishi's observation viewed in the context of jet stream discovery. Bull. Amer. Meteor. Soc., 84, 357-369.   DOI
19 Lorenz, D. J., and E. T. DeWeaver, 2007: Tropopause height and zonal wind response to global warming in the IPCC scenario integrations. J. Geophys. Res., 112, D10119, doi:10.1029/2006JD008087.   DOI
20 Manney, G. L., and Coauthors, 2014: Climatology of Upper Tropospheric-Lower Stratospheric (UTLS) Jets and Tropopauses in MERRA. J. Climate, 27, 3248-3271.   DOI
21 McCabe G. J., M. P. Clark, and M.C. Serreze, 2001: Trends in Northern Hemisphere surface cyclone frequency and intensity. J. Climate, 14, 2763-2768.   DOI
22 Min, C.-H., 2010: Numerical analysis & scientific computing. Cheong moon gak, 225 pp.
23 Nakamura, H., 1992: Midwinter suppression of baroclinic wave activity in the Pacific. J. Atmos. Sci., 49, 1629-1642.   DOI
24 Ramage, C. S., 1952: Relationship of general circulation to normal weather over southern Asia and the western Pacific during the cool season. J. Meteor., 9, 403-408.   DOI
25 Rienecker, M. M., and Coauthors, 2011: MERRA: NASA's Modern-Era Retrospective Analysis for Research and Applications. J. Climate, 24, doi:10.1175/JCLI-D-11-00015.1.   DOI   ScienceOn
26 Screen, J. A., and I. Simmonds, 2010: The central role of diminishing sea ice in recent Arctic temperature amplification. Nature, 464, 1334-1337.   DOI   ScienceOn
27 Seidel, D. J., and W. J. Randel, 2006: Variability and trends in the global tropopause estimated from radiosonde data. J. Geophys. Res., 111, D21101, doi:10.1029/2006JD007363.   DOI
28 Strong, C., and R. E. Davis, 2007: Winter jet stream trends over the Northern Hemisphere. Quart. J. Roy. Meteor. Soc., 133, 2109-2115.   DOI
29 Yang, S., K. M. Lau, and K.-M. Kim, 2002: Variations of the East Asian jet stream and Asian-Pacific-American winter climate anomalies. J. Climate, 15, 306-325.   DOI
30 Zhang, Y., X. Kuang, W. Guo, and T. Zhou, 2006: Seasonal evolution of the upper-tropospheric westerly jet core over East Asia. Geophys. Res. Lett., 33, L11708.   DOI   ScienceOn