• Title/Summary/Keyword: high field magnet

Search Result 358, Processing Time 0.028 seconds

Electromagnetic design study of a 7 T 320 mm high-temperature superconducting MRI magnet with multi-width technique incorporated

  • Jang, Won Seok;Kim, Geonyoung;Choi, Kibum;Park, Jeonghwan;Bang, Jeseok;Hahn, Seungyong
    • Progress in Superconductivity and Cryogenics
    • /
    • v.23 no.4
    • /
    • pp.30-34
    • /
    • 2021
  • Superconducting magnets have paved the way for opening new horizons in designing an electromagnet of a high field magnetic resonance imaging (MRI) device. In the first phase of the superconducting MRI magnet era, low-temperature superconductor (LTS) has played a key role in constructing the main magnet of an MRI device. The highest magnetic resonance (MR) field of 11.7 T was indeed reached using LTS, which is generated by the well-known Iseult project. However, as the limit of current carrying capacity and mechanical robustness under a high field environment is revealed, it is widely believed that commercial LTS wires would be challenging to manufacture a high field (>10 T) MRI magnet. As a result, high-temperature superconductor together with the conducting cooling approach has been spotlighted as a promising alternative to the conventional LTS. In 2020, the Korean government launched a national project to develop an HTS magnet for a high field MRI magnet as an extent of this interest. We have performed a design study of a 7 T 320 mm winding bore HTS MRI magnet, which may be the ultimate goal of this project. Thus, in this paper, design study results are provided. Electromagnetic design and analysis were performed considering the requirements of central magnetic field and spatial field uniformity.

An Invesitgation of Pre-service Teachers Understandings on Magnet (초등학교 예비교사들의 자석에 관한 이해도 조사)

  • 이형철;정승호
    • Journal of Korean Elementary Science Education
    • /
    • v.23 no.2
    • /
    • pp.141-151
    • /
    • 2004
  • Pre-service teachers' understandings on magnet was investigated through the questionnaire method. The questionnaire was composed of 17 questions about the strength of magnet, the magnetized object and the direction of magnetic field around magnet. In this investigation study, 225 pre-service teachers were selected through random sampling method, who were sophomores in a National University of Education. The formation rate of the scientific conceptions on the strength of magnet was 30.3% and that on the direction of magnetic field around magnet was 53.9%. The average formation rate of scientific conception of all questions on magnet was 44.13%, which doesn't seem to be high as expected. It shows that many of subjects of the questionnaire don't understand fully the concept of moleclar magnet model and the superposition effects of magnetic field around magnet. The formation rate of the scientific conception on magnet of females who took courses in sciences in high school were higher than that of females who took courses in arts in high school, which had meaningful difference (p<.05).

  • PDF

Magnetic Field and Electric Field Generated in an HTS Tape of a High Temperature Superconducting Magnet (고온 초전도 마그넷의 선재에서 발생되는 자장과 전계 해석)

  • Kim, Young-Min;Ku, Myung-Hwan;Cha, Guee-Soo;Jeon, Chang-Wan;Paik, Kyoung-Ho
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.60 no.4
    • /
    • pp.753-758
    • /
    • 2011
  • Magnetic field and Electric field of High Temperature Superconducting magnet are very important to analysis of superconducting magnet. The maximum perpendicular magnetic field was applied to the outermost pancake windings. The critical current of all the magnet windings is limited by the critical current of the outermost pancake windings. The E-J relation was used to determine the critical current, and an evolution s trategy was adopted for the optimization of gap length between each pancake windins. The results of calculations show that the critical current and the central magnetic field and uniformity increased by 82.6% and 31.6% and 50.8%, respectively, for a magnet consisting of ten pancake windings. This paper did an analysis the cause of increase the critical current and central magnetic field and uniformity in no gap and optimal gap model.

A Study on Prototype Hybrid (LTS/HTS) Magnet for NMR Application

  • Choi, Suk-Jin;Hwang, Young-Jin;Ko, Tae-Kuk
    • Journal of Magnetics
    • /
    • v.16 no.3
    • /
    • pp.312-317
    • /
    • 2011
  • NMR over 1 GHz (23.5 T) level has difficulties in design and fabrication with only low temperature superconducting (LTS) wire because of its material characteristics such as the decay of critical current under the magnetic field. Because High temperature superconducting (HTS) tape has a good performance under the extremely high magnetic field, it has been developed for high-field magnet over 23.5 T. In this paper, the LTS magnet was made for applying magnetic fields externally and the HTS coil was designed and fabricated. The electromagnetic field analysis has been done with respect to the structure and the operating current of the LTS and HTS coil. Considering to the field homogeneity and the center field, the design parameters which is suitable for the HTS coil were found. The HTS insert coil was impregnated with epoxy resin in order to prevent the movement of winding during energizing the magnet. The hybrid magnet (LTS/HTS) magnet was fabricated and tested based on the design parameters. The experimental result shows that the LTS background magnet and the HTS insert coil can be operated stable beyond 220 A and 210 A. The final value 4.32 T at the center was acquired.

High Field Superconducting Magnet Optimal Design for Nuclear Magnetic Resonance (NMR) Applications (핵자기공명(NMR) 응용을 위한 고자장 초전도 마그네트의 최적화 설계)

  • 고락길;조영식;권영길;진홍범;배준한;심기덕;류강식
    • Proceedings of the Korea Institute of Applied Superconductivity and Cryogenics Conference
    • /
    • 2000.02a
    • /
    • pp.150-153
    • /
    • 2000
  • NMR researches are required high field and high homogeneous super-conducting magnet. Thus superconducting magnets for NMR applications are designed with minimization of coil winding volume satisfied constraints such as field strength, field homogeneity, etc. In this paper, we are discussed optimal design of high field super-conducting magnet for NMR applications. For a design example, we designed unshielded superconducting magnet for 600MHz NMR spectrometer with 100mm room temperature bore size and obtained 14.1011[T] field strength and 1.33 ppm field homogeneity.

  • PDF

A simulation study on the variation of virtual NMR signals by winding, bobbin, spacer error of HTS magnet

  • Kim, Junseong;Lee, Woo Seung;Kim, Jinsub;Song, Seunghyun;Nam, Seokho;Jeon, Haeryong;Baek, Geonwoo;Ko, Tae Kuk
    • Progress in Superconductivity and Cryogenics
    • /
    • v.18 no.3
    • /
    • pp.21-24
    • /
    • 2016
  • Recently, production technique and property of the High-Temperature Superconductor (HTS) tape have been improved. Thus, the study on applying an HTS magnet to the high magnetic field application is rapidly increased. A Nuclear Magnetic Resonance (NMR) spectrometer requires high magnitude and homogeneous of central magnetic field. However, the HTS magnet has fabrication errors because shape of HTS is tape and HTS magnet is manufactured by winding HTS tape to the bobbin. The fabrication errors are winding error, bobbin diameter error, spacer thickness error and so on. The winding error occurs when HTS tape is departed from the arranged position on the bobbin. The bobbin diameter and spacer thickness error occur since the diameter of bobbin and spacer are inaccurate. These errors lead magnitude and homogeneity of central magnetic field to be different from its ideal design. The purpose of this paper is to investigate the effect of winding error, bobbin diameter error and spacer thickness error on the central field and field homogeneity of HTS magnet using the virtual NMR signals in MATLAB simulation.

Field gradient calculation of HTS double-pancake coils considering the slanted turns and the splice

  • Baek, Geonwoo;Kim, Jinsub;Lee, Woo Seung;Song, Seunghyun;Lee, Onyou;Kang, Hyoungku;Ko, Tae Kuk
    • Progress in Superconductivity and Cryogenics
    • /
    • v.19 no.1
    • /
    • pp.51-55
    • /
    • 2017
  • To obtain Nuclear Magnetic Resonance (NMR) measurement of membrane protein, an NMR magnet is required to generate high intensity, homogeneity, and stability of field. A High-Temperature Superconducting (HTS) magnet is a promising alternative to a conventional Low-Temperature Superconducting (LTS) NMR magnet for high field, current density, and stability margin. Conventionally, an HTS coil has been wound by several winding techniques such as Single-Pancake (SP), Double-Pancake (DP), and layer-wound. The DP winding technique has been frequently used for a large magnet because long HTS wire is generally difficult to manufacture, and maintenance of magnet is convenient. However, magnetic field generated by the slanted turns and the splice leads to field inhomogeneity in Diameter of Spherical Volume (DSV). The field inhomogeneity degrades performance of NMR spectrometer and thus effect of the slanted turns and the splice should be analyzed. In this paper, field gradient of HTS double-pancake coils considering the slanted turns and the splice was calculated using Biot-Savart law and numerical integration. The calculation results showed that magnetic field produced by the slanted turns and the splice caused significant inhomogeneity of field.

High-Tc superconducting magnet properites with design conditions (설계조건에 따른 고온 초전도 마그넷의 특성변화)

  • Kim, Min-Ki;Ko, Yo;Han, Byoung-Sung
    • Electrical & Electronic Materials
    • /
    • v.8 no.4
    • /
    • pp.451-457
    • /
    • 1995
  • Most important study on development of high-Tc superconducting magnet is magnetic properties with design conditions To study optimal design condition of high-Tc superconducting magnet, small size solenoid magnet was designed and simulated. Design conditions are radius of bobbin, radius of magnet, length of magnet, critical cur-rent and notch size. We know that intensity of magnetic fields was controled by critical current and uniformity of magnetic fields was controled by notch size. The optimal design conditions to get the high intensity and uniformity of magnetic field in this experiments were radius of bobbin=3[cm], radius of magnetic=12[cm], length of Z=10[cm], notch size=6[cm] and critical current=12[A].

  • PDF

High-temperature superconductors for NMR/MRI magnets:opportunities and challenges

  • Iwasa, Yukikazu;Bascunan, Juan;Hahn, Seungyong;Yao, Weijun
    • Superconductivity and Cryogenics
    • /
    • v.11 no.2
    • /
    • pp.23-29
    • /
    • 2009
  • The unique features of HTS offer opportunities and challenges to a number of applications. In this paper we focus on NMR and MRI magnets, illustrating them with the NMR/MRI magnets that we are currently and will shortly be engaged: a 1.3 GHz NMR magnet, an "annulus" magnet, and an $MgB_2$whole-body MRI magnet. The opportunities with HTS include: 1) high fields (e.g., 1.3 GHz magnet); 2) compactness (annulus magnet); and 3) enhanced stability despite liquid-helium-free operation ($MgB_2$whole-body MRI magnet). The challenges include: 1) a large screening current field detrimental to spatial field homogeneity (e.g., 1.3 GHz magnet); 2) uniformity of critical current density (annulus magnet); and 3) superconducting joints ($MgB_2$magnet).

  • PDF

A Study on Highly Homogeneous Double Helmholtz Superconducting Magnet and Newly Configurated Superconducting Magnet (고균일자계 Double Helmholtz형 및 삼개분리 원통형키전동자석에 관한 연구)

  • 이승원;권용안
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.37 no.8
    • /
    • pp.521-527
    • /
    • 1988
  • At present superconducting magnets have been feasible for many applications which require high field or highly homogeneous field that it is too difficult to be produced by conventional electromagnets. This paper is a stuny on Donble Helmholtz superconducting magnet and newly configurated superconducting magnet that realize highly homogeneous field with the minimum magnet volume. Nonlinear programming method is effectively used for the minimum volume of superconducting magnet that realizes the desired field intensity and high homogeneity. The results on Double Helmholtz and newly configurated superducting magnets that are presented in this paper are largely improved.

  • PDF