• 제목/요약/키워드: high durability

검색결과 1,932건 처리시간 0.035초

Thermal Durability of Thermal Barrier Coatings in Furnace Cyclic Thermal Fatigue Test: Effects of Purity and Monoclinic Phase in Feedstock Powder

  • Park, Hyun-Myung;Jun, Soo-Hyk;Lyu, Guanlin;Jung, Yeon-Gil;Yan, Byung-Il;Park, Kwang-Yong
    • 한국세라믹학회지
    • /
    • 제55권6호
    • /
    • pp.608-617
    • /
    • 2018
  • The effects of the purity and monoclinic phase of feedstock powder on the thermal durability of thermal barrier coatings (TBC) were investigated through cyclic thermal exposure. Bond and top coats were deposited by high velocity oxygen fuel method using Ni-Co based feedstock powder and air plasma spray method using three kinds of yttria-stabilized zirconia with different purity and monoclinic phase content, respectively. Furnace cyclic thermal fatigue test was performed to investigate the thermal fatigue behavior and thermal durability of TBCs. TBCs with high purity powder showed better sintering resistance and less thickness in the thermally grown oxide layer. The thermal durability was found to strongly depend on the content of monoclinic phase and the porosity in the top coat; the best thermal fatigue behavior and thermal durability were in the TBC prepared with high purity powder without monoclinic phase.

해양환경에 노출된 고내구성 콘크리트의 전기화학적기법을 이용한 부식저항성 평가 (Evaluation of Corrosion Resistance using Electro-chemical Methods for the High-Durability Concrete exposed to Marine Condition)

  • 양은익;김명유;이동근;한상훈
    • 한국해안해양공학회지
    • /
    • 제19권4호
    • /
    • pp.320-328
    • /
    • 2007
  • 해양콘크리트구조물의 내구성은 일반적으로 해수의 침식 작용과 콘크리트 내부로 침투하는 염분의 확산에 따른 부식에 의해 크게 피해를 입으며, 이러한 내구성 저하는 해양콘크리트구조물의 과다한 유지 관리비를 초래하게 된다. 따라서 해양구조물의 내구성 증진을 위하여 고내구성 재료의 사용이 검토되고 있다. 본 연구에서는, 광물질 혼화재(실리카흄, 플라이애쉬, 고로슬래그미분말)와 표면처리 철근(스테인리스 봉강, 에폭시 코팅) 그리고 부식억제제를 사용한 해양콘크리트의 부식저항 특성을 전기화학적기법을 이용하여 비교 검토하였다. 또한 고내구성 재료사용에 따른 내구성 증진효과를 정량적으로 제안하였다.

Evaluation of incorporating metakaolin to evaluate durability and mechanical properties of concrete

  • Joshaghani, Alireza;Moeini, Mohammad Amin;Balapour, Mohammad
    • Advances in concrete construction
    • /
    • 제5권3호
    • /
    • pp.241-255
    • /
    • 2017
  • Concrete is known to be the most used construction material worldwide. The environmental and economic aspects of Ordinary Portland Cement (OPC) containing concrete have led research studies to investigate the possibility of incorporating supplementary cementitious materials (SCMs) in concrete. Metakaolin (MK) is one SCM with high pozzolanic reactivity generated throughout the thermal activation of high purity kaolinite clay at a temperature ranging from $500^{\circ}C$ to $800^{\circ}C$. Although many studies have evaluated the effect of MK on mechanical properties of concrete and have reported positive effects, limited articles are considering the effect of MK on durability properties of concrete. Considering the lifetime assessment of concrete structures, the durability of concrete has become of particular interest recently. In the present work, the influences of MK on mechanical and durability properties of concrete mixtures are evaluated. Various experiments such as slump flow test, compressive strength, water permeability, freeze and thaw cycles, rapid chloride penetration and surface resistivity tests were carried out to determine mechanical and durability properties of concretes. Concretes made with the incorporation of MK revealed better mechanical and durability properties compared to control concretes due to combined pozzolanic reactivity and the filler effect of MK.

엔진 밸런스 샤프트 하우징의 내구성 평가를 위한 CAE 절차 개발 (CAE Procedure of Engine Balance Shaft Housing for Prediction of Durability)

  • 최항집
    • 한국자동차공학회논문집
    • /
    • 제15권1호
    • /
    • pp.133-138
    • /
    • 2007
  • The balance shaft housing in the recent engines tends to have the high cycle fatigue crack caused by increased engine power. In this paper, a CAE procedure is introduced to predict the durability of the balance shaft housing. The procedure is performed through two analysis steps. In the first step, the multibody dynamic simulation is used to obtain more accurate loading boundary conditions applied to the finite element model for the following step. Next, the finite element analysis is performed to predict the durability of the balance shaft housing through the calculation of the safety factor. Through this CAE procedure, the revised balance shaft housing was developed to improve the durability. And the durability of the housing was confirmed experimentally.

급결제 및 혼화제 종류가 숏크리트 내구성에 미치는 영향에 관한 연구 (An Experimental Study on the Effect of Accelerator and Chemical Admixture Type for the Durability of Shotcrete)

  • 백신원;권소진;이영수;김의성;신용석
    • 한국안전학회지
    • /
    • 제18권3호
    • /
    • pp.109-113
    • /
    • 2003
  • Concrete and shotcrete should withstand the conditions for which they have been designed, without deterioration, over a period of years. But connote and shotcrete are being deteriorated according to aging by internal and external causes. Recently, many studies on the durability of concrete have been conducted But the durability of shotcrete is rarely studied. So, in this study, chloride ion penetration test freeze and thaw test neutralization test were conducted to examine the durability characteristics of shotcrete with several accelerator and chemical admixture types. These results indicate that shotcrete with allah free accelerator and with superplasticizer are durable. Therefore, the present study provides a fm base to make high performance shotcrete.

Assessment of some parameters of corrosion initiation prediction of reinforced concrete in marine environments

  • Moodi, Faramarz;Ramezanianpour, Aliakbar;Jahangiri, Ehsan
    • Computers and Concrete
    • /
    • 제13권1호
    • /
    • pp.71-82
    • /
    • 2014
  • Chloride ion ingress is one of the major problems that affect the durability of concrete structures such as bridge decks, concrete pavements, and other structures exposed to harsh saline environments. Therefore, durability based design of concrete structures in severe condition has gained great significance in recent decades and various mathematical models for estimating the service life of rein-forced concrete have been proposed. In spite of comprehensive researches on the corrosion of rein-forced concrete, there are still various controversial concepts in quantitation of durability parameters such as chloride diffusion coefficient and surface chloride content. Effect of environment conditions on the durability of concrete structures is one of the most important issues. Hence, regional investigations are necessary for durability based design and evaluation of the models. Persian Gulf is one of the most aggressive regions of the world because of elevated temperature and humidity as well as high content of chloride ions in seawater. The aim of this study is evaluation of some parameters of durability of RC structures in marine environment from viewpoint of corrosion initiation. For this purpose, some experiments were carried out on the real RC structures and in laboratory. The result showed that various uncertainties in parameters of durability were existed.

가열시간에 따른 고성능콘크리트의 폭렬특성에 관한 연구 (The Study on the Explosive Spalling Properties of High Performance Concrete According to the Heating Time)

  • 나철성;노경민;조봉석;권영진;김규용;김무한
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2006년도 추계 학술발표회 논문집
    • /
    • pp.461-464
    • /
    • 2006
  • Recently, as structures become bigger and higher, it is needed that high strength, high flow and high durability concrete. Demanding of High performance concrete that equality is maintained without material separation while flow, strength is increased by using low W/C rate and admixture, carbonation does not occur because of dense filling and has high durability is increasing rapidly. Because this high performance concrete is superior to general concrete in workability and durability, it is widely used in many construction and engineering works fields. However, it is reported that when it was exposed in fire, violent explosive spalling would be happened. Therefore, the purpose of this study evaluates explosive spalling properties of fire damaged high performance concrete according to the heating time.

  • PDF

콘크리트 구조체 내구성 향상을 위한 침투성 표면 보호재의 특성에 관한 실험적 연구 (An Experimental Study about Characteristics of Penetrating Surface Protection Materials to Promote Concrete Structure Durability)

  • 이정윤;조병영;김영근;오상근
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2005년도 추계 학술논문 발표대회
    • /
    • pp.93-96
    • /
    • 2005
  • Concrete has been considered as a semi-permanent structural material, because its excellent durability. Recently, durability decline of concrete construction by environmental pollution is becoming social problem. The durability of high durable structure is declined by carbonate, chloride permeation and deterioration of waterproof performance, etc. This study of penetrating surface protection materials evaluated about carbonation, chloride permeation, waterproof performance, and durability of abrasion, etc. It is profitable in durability that spread penetrating surface protection materials

  • PDF

고내구성 콘크리트(PHDC)의 현장적용 성능 및 장기 모니터링에 관한 연구 (A Study on Promoted High.Durability Concrete Applied to Coastal Landfill Underground Structures and long Time Monitoring)

  • 김우재;김도수;길배수;최세진;홍석범
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2010년도 춘계 학술대회 제22권1호
    • /
    • pp.457-458
    • /
    • 2010
  • 본 연구는 해안 매립지 지하 콘크리트 구조물의 염해에 대한 피해를 방지하고자 개발한 고내구성 콘크리트(Promoted High Durability Concrete, PHDC)의 기초 물성 및 현장적용성능에 대한 시험 결과를 기술하였으며, PHDC 기술을 토목 및 건축공사 적용시 콘크리트의 물성을 검토하여 회사의 내구성 콘크리트 기준을 제시하였다. 또한 내염해성에 대한 장기 모니터링에 관한 계획을 수립한 후 염분 침투 모니터링 현황을 논문에 기술 하였다.

  • PDF

고강도 경량골재 콘크리트의 내구성에 관한 연구 (Evaluation of Durability of Highstrength Light-weight Aggregate Concretes)

  • 김광우;이상범;조회원;정규동;이석홍
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 1997년도 가을 학술발표회 논문집
    • /
    • pp.416-421
    • /
    • 1997
  • This study was conducted to evaluate durability of high-strength light-weight aggregate concretes which are increasingly demanded recently. Two different artificial light-weight aggregates were used and two levels of high-strength concretes were made using w/c of 33% and 37% for target strength of 500kg/$\textrm{cm}^2$ and 400kg/$\textrm{cm}^2$, respectively. Cylinder specimens($\phi$=10cm and h=20cm) were made and treated with freezing-and-thawing(F/T) cycle at $-18^{\cire}C$ and $4^{\cire}C$. Dynamic modulus of elasticity and surface condition were evaluated with F/T cycle increase. The results showed that durability of the light-weight aggregate concretes was worse than that of conventional concrete, and the light-weight high-strength concrete with w/c=37% had the better durability than the one with w/c=33%.

  • PDF