• Title/Summary/Keyword: high durability

Search Result 1,935, Processing Time 0.028 seconds

The Comparison of Apparent Chloride Diffusion Coefficients in GGBFS Concrete Considering Sea Water Exposure Conditions (해양 폭로 환경에 따른 GGBFS 콘크리트의 겉보기 염화물 확산계수 비교)

  • Yoon, Yong-Sik;Jeong, Gi-Chan;Kwon, Seung-Jun
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.26 no.2
    • /
    • pp.18-27
    • /
    • 2022
  • In this study, the time-dependent chloride ingress behavior in GGBFS concrete was evaluated considering marine exposure conditions and the properties of concrete mixtures. The concrete mixture for this study had 3 levels of water to binder ratio and the substitution rate of GGBFS, and outdoor exposure tests were performed considering submerged area, tidal area, and splash area. According to the evaluation results of diffusion coefficient considering properties of concrete mixtures, as the substitution rate of GGBFS increased, the decreasing rate of the diffusion coefficient decreased based on exposure periods of 730 days(2 years). As the evaluation result of the diffusion behavior according to the marine exposure conditions, the diffusion coefficient was evaluated in the order of submerged area, tidal area, and splash area. In tidal area, a relatively high diffusion coefficient was evaluated due to the repetition of wet and dry seawater. In this study, the effects of GGBFS substitution rate on the decreasing behavior of apparent chloride diffusion coefficient was analyzed in consideration of exposure conditions and periods. Linear regression analysis was performed with apparent chloride diffusion coefficient as output value and GGBFS substitution rate as input value. After 730 days of exposure, the effect of GGBFS on diffusion coefficient was significantly reduced. Even for OPC concrete, after 730 days, the diffusion coefficient was as low as that of GGBFS concrete, so the gradient of the regression equation decreased significantly. It is thought that improved durability performance for chloride ingress can be secured before 730 days through the use of GGBFS.

Position Control of Dual Redundant Asymmetric Tandem Electro-Hydrostatic Actuator for Aircraft based on Backstepping Technique (백스테핑 기법을 이용한 항공기용 이중화 비대칭형 직렬 전기-정유압 구동기의 위치제어)

  • Kim, Daeyeon;Park, Hyung Jun;Kim, Sang Seok;Kim, Dae Hyun;Kim, Sang Beom;Lee, Junwon;Choi, Jong Yoon
    • Journal of Aerospace System Engineering
    • /
    • v.15 no.3
    • /
    • pp.1-10
    • /
    • 2021
  • The electro-hydrostatic actuators (EHA) are widely used in various industrial fields since they can independently execute the function of the hydraulic power source and have high efficiency. Particularly, in the aviation field, the EHA is mainly designed as dual redundant asymmetric tandem actuator to mitigate failure and minimize installation space. However, aviation EHAs designed in the form of dual redundant asymmetric tandem actuator have the disadvantage of decreased durability performance due to the occurrence of force fighting. In this paper, the controller is designed based on backstepping technique to improve control performance and reduce force fighting for aviation EHA. The augmented state observer is proposed to estimate the states required for control. Through simulation, it was verified that the proposed controller had superior control performance and significantly reduces the force fighting compared to the general PI controller.

Analysis of Failure Behavior of FRP Rebar Reinforced Concrete Slab based on FRP Reinforced Ratio (FRP 보강근비에 따른 FRP 보강 콘크리트 슬래브의 파괴거동 분석)

  • Jang, Nag-Seop;Kim, Young-Hwan;Oh, Hong-Seob
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.25 no.5
    • /
    • pp.173-181
    • /
    • 2021
  • Reinforced concrete structures are exposed to various environments, resulting in reinforcement corrosion due to moisture and ions penetration. Reinforced concrete corrosion causes a decrease in the durability performance of reinforced concrete structures. One solution to mitigate such issues is using FRP rebars, which offer several advantages such as high tensile strength, corrosion resistance, and light-weight than conventional rebars, in reinforced concrete instead of conventional steel rebars. The FRP rebar used should be examined at the limit state because FRP reinforced concrete has linear behavior until its fracture and can generate excessive deflection due to the low elastic modulus. It should be considered while designing FRP reinforced concrete for flexure. In the ultimate limit state, the flexural strength of FRP reinforced concrete as per ACI 440.1R is significantly lower than the flexural strength by applying both the environmental reduction and strength reduction factors accounting for the material uncertainty of FRP rebar. Therefore, in this study, the experimental results were compared with the deflection of the proposed effective moment of inertia referring to the local and international standards. The experimental results of GFRP and BFRP reinforced concrete were compared with the flexural strength as determined by ACI 440.1R and Fib bulletin 40. The flexural strength obtained by the experimental results was more similar to that obtained by Fib bulletin 40 than ACI 440.1R. The flexural strength of ACI 440.1R was conservatively evaluated in the tension-controlled section.

A Study on Injection Nozzle and Internal Flow Velocity for Removing Air Bubbles inside the Sample Tanks during Hydraulic Rupture Test (수압파열시험 시 시료 탱크 내부 기포 제거를 위한 주입 노즐 및 내부 유속 연구)

  • Yeseung, Lee;Hyunseok, Yang;Woo-Chul, Jung;Dong Hoon, Lee;Man-Sik, Kong
    • Journal of the Korean Institute of Gas
    • /
    • v.26 no.6
    • /
    • pp.9-15
    • /
    • 2022
  • In order to verify the durability of the high-pressure hydrogen tank in the operating pressure range, a hydraulic rupture test should be performed. However, if the bubbles generated by the initial injection process of water are attached to the inner wall of the tank and remain, a sudden pressure change of the bubbles during the rupture of the pressurized tank may cause shock and noise. Therefore, in this study, the flow velocity required to remove the bubbles remaining on the inner wall of the tank was predicted through simplified formulas, and the shape of the injection nozzle to maintain the flow velocity was determined based on the shape of the hydrogen tank for the hydrogen bus. In addition, a numerical model was developed to predict the change in flow velocity according to the inlet pressure, and an experiment was performed through a model tank to prove the validity of the prediction result. As a result of the experiment, the flow velocity near the tank wall was similar to the predicted value of the analysis model, and when the inlet pressure was 1.5 to 5.5 bar, the minimum size of the removable bubble was predicted to be about 2.2 to 4.6 mm.

Development of Nanomodified Snow-Melting Concrete Using Low-Temperature Phase-Change Material Impregnated Lightweight Aggregate (저온 상변화 물질 함침 경량골재를 이용한 나노 개질 융설 콘크리트 개발)

  • Kyoung, Joo-Hyun;Kim, Sean-Mi;Hu, Jong-Wan
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.42 no.6
    • /
    • pp.787-792
    • /
    • 2022
  • In winter, the excessive use of deicing salt deteriorates concrete pavement durability. To reduce the amount of deicing salt used, phase-change materials (PCMs) potentially offer an alternative way to melt snow through their latent heat storage characteristics. In this research, thermal energy storage concrete was developed by using PCM-impregnated expanded clay as 50 % replacement to normal aggregate by volume. In addition, to improve the thermal efficiency of PCM lightweight aggregate (PCM-LWA)-incorporated concrete, multi-walled carbon nanotubes (MWCNTs) were incorporated in proportions of 0.10 %, 0.15 %, and 0.20 % by binder weight. Compressive strength testing and programmed thermal cycling were performed to evaluate the mechanical and thermal responses of the PCM-LWA concrete. Results showed a significant strength reduction of 54 % due to the PCM-LWA; however, the thermal performance of the PCM-LWA concrete was greatly improved with the addition of MWCNTs. Thermal test results showed that 0.10 % MWCNT-incorporated concrete had high thermal fatigue resistance as well as uniform heat flow, whereas specimens with 0.15 % and 0.20 % MWCNT content had a reduced thermal response due to supercooling when the ambient temperature was varied between -5℃ and 10℃.

Development of Pore Filled Anion Exchange Membrane Using UV Polymerization Method for Anion Exchange Membrane Fuel Cell Application (음이온교환막 연료전지 응용을 위한 UV 중합법을 이용한 세공 충진 음이온교환막 개발)

  • Ga Jin Kwak;Do Hyeong Kim;Sang Yong Nam
    • Membrane Journal
    • /
    • v.33 no.2
    • /
    • pp.77-86
    • /
    • 2023
  • In this study, pore-filled ion exchange membranes with low membrane resistance and high hydroxide ion conductivity was developed. To improve alkali durability, a porous substrate made of polytetrafluoroethylene was used, and a copolymer was prepared using monomers 2-(dimethyl amino) ethyl methacrylate (DMAEMA) and vinyl benzyl chloride (VBC) for pores. divinyl benzene (DVB) was used as the cross-linker, and ion exchange membranes were prepared for each cross-linking agent content to study the effect of the cross-linker content on DMAEMA-DVB and VBC-DMAEMA-DVB copolymers. As a result, chemical stability is improved by using a PTFE material substrate, and productivity can be increased by enabling fast photo polymerization at a low temperature by using a low-pressure UV lamp. To confirm the physical and chemical stability of the ion exchange membrane required for an anion exchange membrane fuel cell, tensile strength, and alkali resistance tests were conducted. As a result, as the cross-linking degree increased, the tensile strength increased by approximately 40 MPa, and finally, through the silver conductivity and alkali resistance tests, it was confirmed that the alkaline stability increased as the cross-linking agent increased.

A Study on Tensile Property due to Stacking Structure by Fiber Design of CT Specimen Composed of CFRP (CFRP로 구성된 CT시험편의 섬유설계에 의한 적층구조에 따른 인장 특성 연구)

  • Hwang, Gue-Wan;Cho, Jae-Ung
    • Asia-pacific Journal of Multimedia Services Convergent with Art, Humanities, and Sociology
    • /
    • v.7 no.11
    • /
    • pp.447-455
    • /
    • 2017
  • At the modern industry, the composite material has been widely used. Particularly, the material of carbon fiber reinforced plastic hardened with resin on the basis of fiber is excellent. As the specific strength and rigidity are also superior, it receives attention as the light material. Among these materials, the carbon fiber reinforced plastic using carbon fiber has the superior mechanical property different from another fiber. So, it is utilized in vehicle and airplane at which high strength and light weight are needed at the same time. In this paper, the tensile property due to the fiber design is investigated through the analysis study with CT specimen composed of carbon plastic reinforced plastic. At the stress analysis of CFRP composite material with hole, the fracture trend at the tensile environment is examined. Also, it is shown that the lowest stress value happens and the deformation energy of the pre-crack becomes lowest at the analysis model composed of the stacking angle of 60° through the result due to the stacking angle. On the basis of this study result, it is thought to apply the foundation data to anticipate the fracture configuration at the structure applied with the practical experiment.

Enhancement of Penetration by Using Mechenical Micro Needle in Textile Strain Sensor (텍스타일 스트레인 센서에 마이크로 니들을 이용한 전도성입자 침투력 향상)

  • Hayeong Yun;Wonjin Kim;Jooyong Kim
    • Science of Emotion and Sensibility
    • /
    • v.25 no.4
    • /
    • pp.45-52
    • /
    • 2022
  • Recently, interest in and demand for sensors that recognize physical activity and their products are increasing. In particular, the development of wearable materials that are flexible, stretchable, and able to detect the user's biological signals is drawing attention. In this study, an experiment was conducted to improve the dip-coating efficiency of a single-walled carbon nanotube dispersion solution after fine holes were made in a hydrophobic material with a micro needle. In this study, dip-coating was performed with a material that was not penetrated, and comparative analysis was performed. The electrical conductivity of the sensor was measured when the sensor was stretched using a strain universal testing machine (Dacell Co. Ltd., Seoul, Korea) and a multimeter (Keysight Technologies, Santa Rosa, CA, USA) was used to measure resistance. It was found that the electrical conductivity of a sensor that was subjected to needling was at least 16 times better than that of a sensor that was not. In addition, the gauge factor was excellent, relative to the initial resistance of the sensor, so good performance as a sensor could be confirmed. Here, the dip-coating efficiency of hydrophobic materials, which have superior physical properties to hydrophilic materials but are not suitable due to their high surface tension, can be adopted to more effectively detect body movements and manufacture sensors with excellent durability and usability.

Stress-strain Relations of Concrete Confined with Tubes Having Varying GFRP Layers (수적층 및 필라멘트 와인딩을 이용한 GFRP튜브로 구속된 콘크리트의 압축 거동)

  • Lee, Sung Woo;Choi, Sokhwan
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.28 no.6A
    • /
    • pp.861-872
    • /
    • 2008
  • Concrete-filled glass fiber reinforced polymer tubes are often used for marine structures with the benefit of good durability and high resistance against corrosion under severe chemical environment. Current research presents results of a comprehensive experimental investigation on the behavior of axially loaded circular concrete-filled glass fiber reinforced polymer tubes. This paper is intended to examine several aspects related to the usage of glass fiber fabrics and filament wound layers used for outer shell of piles subjected to axial compression. The objectives of the study are as follows: (1) to evaluate the effectiveness of filament winding angle of glass fiber layers (2) to evaluate the effect of number of GFRP layers on the ultimate load and ductility of confined concrete (3) to evaluate the effect of loading condition of specimens on the effectiveness of confinement and failure characteristics as well, and (4) to propose a analytical model which describes the stress-strain behavior of the confined concrete. Three different types of glass fiber layers were chosen; fabric layer, ${\pm}45^{\circ}$ filament winding layer, and ${\pm}85^{\circ}$ filament winding layer. They were put together or used independently in the fabrication of tubes. Specimens that have various L:D ratios and different diameters have also been tested. Totally 27 GFRP tube specimens to investigate the tension capacity, and 66 concrete-filled GFRP tube specimens for compression test were prepared and tested. The behavior of the specimens in the axial and transverse directions, failure types were investigated. Analytical model and parameters were suggested to describe the stress-strain behavior of concrete under confinement.

Fatigue Behavior of Steel-Concrete Composite Bridge Deck with Perfobond Rib Shear Connector (유공판재형 전단연결재를 갖는 강-콘크리트 합성바닥판의 피로거동에 관한 연구)

  • Kyung, Kab Soo;Lee, Seung Yong;Jeong, Youn Ju;Kwon, Soon Cheol
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.30 no.1A
    • /
    • pp.71-80
    • /
    • 2010
  • Bridge deck is directly influenced by environment and vehicle load, it is easily damaged so that it requires an appropriate repair and retrofit. Therefore, developing a bridge deck with high durability is necessary in order to minimize the maintenance of bridge deck and use it to its design life. In this study, static test was carried out to evaluate a fatigue capacity of steel-concrete composite deck, which was newly developed by supplementing problems of existing reinforced concrete deck. Based on results from the static test, fatigue load was decided, and fatigue test was conducted under the constant amplitude repeated load. From the fatigue tests, the S-N curve regarding principle structural details of composite deck was made, and characteristics of fatigue behavior was estimated by comparing and evaluating it with fatigue design criteria. In addition, fatigue design guideline was presented. As a result, it is found that each structural details of composite deck proposed by this study, such as upper flange of corrugated steel plate and middle section of it, shear connector and lower flange of corrugated steel plate, is satisfying the fatigue strength.