• 제목/요약/키워드: high dose irradiation

검색결과 465건 처리시간 0.027초

고선량 감마선 조사가 즉석 취식용 양념 돼지 갈비 구이의 저장성 및 지질 산화에 미치는 영향 (Effects of High Dose Gamma Irradiation on Shelf Stability and Lipid Oxidation of Marinated and Precooked Pork Rib Steak)

  • 이주운;박재남;김재훈;박진규;김천제;김관수;변명우
    • 한국축산식품학회지
    • /
    • 제26권4호
    • /
    • pp.471-477
    • /
    • 2006
  • 본 연구는 사막이나 우주 등 극한 환경에서도 취식이 가능한 즉석 양념 돼지 갈비 구이의 저장 안정성 확보를 위한 고선량 조사 적용을 평가하기 위해 실시하였다. 이를 위해 즉석 양념 돼지 갈비 구이를 제조하여 진공 포장한 후 10, 20, 30, 40 및 50 kGy로 조사하고 $35^{\circ}C$에서 가속 저장하면서 미생물 생육과 지질 산패도를 평가하였다. 가열처리에 의해 약 3 Log CFU/g의 미생물 감소 효과를 얻을 수 있었으나, 완전 사멸시키지는 못했다. 감마선 조사에 의해 저장 초기 미생물 생육은 관찰되지 않았으나, 저장 기간이 경과함에 따라 10, 20, 30 kGy조사구에서 저장4일, 7일, 14일에 미생물 생육이 관찰되었다. 오염 미생물의 최대성장률 예측 결과에서 비조사구, 10, 20, 30 kGy 감마선 조사구의 최대 성장률이 1.13, 0.60, 0.52, 0.18 Log CFU/g/day로 나타나, 감마선 조사에 의한 초기 미생물 감소가 저장성 증진에 크게 효과적인 것으로 판단되었다. 그러나 가속 저장 중 malondialdehyde 함량은 저장 기간이 경과함에 따라 모든 처리구에서 증가하였고, 특히 감마선 조사에 의해 심한 지질 산화가 발생되는 것으로 나타났다. 따라서, 고선량 조사 적용시 품질 변화 없이도 육가공품의 완전멸균을 위해서는 다양한 식품 가공 방법과의 병용 처리 연구가 수행되어야 할 것이다.

Point defects and grain boundary effects on tensile strength of 3C-SiC studied by molecular dynamics simulations

  • Li, Yingying;Li, Yan;Xiao, Wei
    • Nuclear Engineering and Technology
    • /
    • 제51권3호
    • /
    • pp.769-775
    • /
    • 2019
  • The tensile strength of irradiated 3C-SiC, SiC with artificial point defects, SiC with symmetric tilt grain boundaries (GBs), irradiated SiC with GBs are investigated using molecular dynamics simulations at 300 K. For an irradiated SiC sample, the tensile strength decreases with the increase of irradiation dose. The Young's modulus decreases with the increase of irradiation dose which agrees well with experiment and simulation data. For artificial point defects, the designed point defects dramatically decrease the tensile strength of SiC at low concentration. Among the point defects studied in this work, the vacancies drop the strength the most seriously. SiC symmetric tilt GBs decrease the tensile strength of pure SiC. Under irradiated condition, the tensile strengths of all SiC samples with grain boundaries decrease and converge to certain value because the structures become amorphous and the grain boundaries disappear after high dose irradiation.

A SOLUTION TO THE PROBLEM WITH ABSORBED DOSE

  • Braby, Leslie A.
    • Nuclear Engineering and Technology
    • /
    • 제40권7호
    • /
    • pp.533-538
    • /
    • 2008
  • In some situations, for example at very low doses, in microbeam irradiation experiments, or around high energy heavy ion tracks, use of the absorbed dose to describe the energy transferred to the irradiated target can be misleading. Since absorbed dose is the expected value of energy per mass it takes into account all of the targets which do not have any energy deposition. In many situations that results in numerical values, in Joules per kg, which are much less than the energy deposited in targets that have been crossed by a charged particle track. This can lead to confusion about the biochemical processes that lead to the consequences of irradiation. There are a few alternative approaches to describing radiation that avoid this potential confusion. Examples of specific situations that can lead to confusion are given. It is concluded that using the particle radiance spectrum and the exposure time, instead of absorbed dose, to describe these irradiations minimizes the potential for confusion about the actual nature of the energy deposition.

Sensitivity Variations with pre-irradiation dose to P-type Semi conductor for radiation dosimetry

  • 최태진;김옥배
    • 한국의학물리학회지:의학물리
    • /
    • 제6권1호
    • /
    • pp.49-57
    • /
    • 1995
  • 반도체검출기는 소형 및 방사선에 고감도특성을 갖고 있으나, 고에너지 광자선 및 전자선등의 조사에 의해 손상을 입어 감도저하를 초래하게 되며 계측시 선량재현성을 기대하기어려워진다. 실험대상은 P-형 실리콘 반도체검출기이며 선량율, 김출방향 및 온도 변화에 따른 선량특성이 조사되었고, 선량재현성을 높이기 위해 18 MeV 고에너지전자선으로 3KGy까지 전처리조사하고 광자선 및 전자선의 전처리조사선량에 대한 감도특성변화를 얻었다. 전처리조사가 작은 0.5KGy인 경우, 저선량율과 고선량율하의 단위선량당 감도는 약 35%의 차이를 보였으며 .3KGy인 경우 약 20%의 차이를 보여 전처리선량이 클 수록 감도차는 작아짐을 알수 있다. 실리콘 반도체검출기의 검출방향성은 임의의 조사각에서 최저치와 최대치의 선량차가 약 13%를 나타내었으며, 검출기의 온도의존성은 4도에서 35도까지 거의 선형성을 보였다.

  • PDF

Effects of electron beam irradiation on the superconducting properties of YBCO thin films

  • Lee, Y.J.;Choi, J.H.;Jun, B.H.;Joo, J.;Kim, C.S.;Kim, C.J.
    • 한국초전도ㆍ저온공학회논문지
    • /
    • 제18권4호
    • /
    • pp.15-20
    • /
    • 2016
  • The effects of electron beam (EB) irradiation on the superconducting critical temperature ($T_c$) and critical current density ($J_c$) of YBCO films were studied. The YBCO thin films were irradiated using a KAERI EB accelerator with an energy of 0.2 MeV and a dose of $10^{15}-10^{16}e/cm^2$. A small $T_c$ decrease and a broad superconducting transition were observed as the EB dose increased. The value of $J_cs$ (at 20 K, 50 K and 70 K) increased at doses of $7.5{\times}10^{15}$ and $2.2{\times}10^{16}e/cm^2$. However, $J_cs$ decreased as the dose increased further. The X-ray diffraction (XRD) analysis showed that the c axis of YBCO was elongated and the full width at half maximum (FWHM) increased as the dose increased, which is strong evidence of the atomic displacement by EB irradiation. The transmission electron microscopy (TEM) showed that the amorphous layer formed in the vicinity of the surfaces of the irradiated films. The amorphous phase was often present as an isolated form in the interior of the films. In addition to the formation of the amorphous phase, many striations running along the a-b direction of YBCO were observed. The high magnification lattice image showed that the striations were stacking faults. The enhancement of $J_c$ by EB irradiation is likely to be due to the lattice distortion and the formation of defects such as vacancies and stacking faults. The decrease in $J_c$ at a high EB dose is attributed to the extension of the amorphous region of a non-superconducting phase.

Real-time monitoring of ultra-high dose rate electron beams using bremsstrahlung photons

  • Hyun Kim;Dong Hyeok Jeong;Sang Koo Kang;Manwoo Lee;Heuijin Lim;Sang Jin Lee;Kyoung Won Jang
    • Nuclear Engineering and Technology
    • /
    • 제55권9호
    • /
    • pp.3417-3422
    • /
    • 2023
  • Recently, as the clinically positive biological effects of ultra-high dose rate (UHDR) radiation beams have been revealed, interest in flash radiation therapy has increased. Generally, FLASH preclinical experiments are performed using UHDR electron beams generated by linear accelerators. Real-time monitoring of UHDR beams is required to deliver the correct dose to a sample. However, it is difficult to use typical transmission-type ionization chambers for primary beam monitoring because there is no suitable electrometer capable of reading high pulsed currents, and collection efficiency is drastically reduced in pulsed radiation beams with ultra-high doses. In this study, a monitoring method using bremsstrahlung photons generated by irradiation devices and a water phantom was proposed. Charges collected in an ionization chamber located at the back of a water phantom were analyzed using the bremsstrahlung tail on electron depth dose curves obtained using radiochromic films. The dose conversion factor for converting a monitored charge into a delivered dose was determined analytically for the Advanced Markus® chamber and compared with experimentally determined values. It is anticipated that the method proposed in this study can be useful for monitoring sample doses in UHDR electron beam irradiation.

Amorphization of Silicon by 250 keV Electron Irradiation and Hydrogen Annealing

  • Jo Jung-Yol
    • KIEE International Transactions on Electrophysics and Applications
    • /
    • 제5C권1호
    • /
    • pp.23-27
    • /
    • 2005
  • We observed that optical properties of silicon changed under high dose electron irradiation at 250 keV. Our experimental results revealed that the optical transmission through a silicon wafer is significantly increased by electron irradiation. Transmission increase by the change in the absorption coefficient is explained through an analogy with amorphous silicon. Moreover, solar cell open-circuit voltages indicated that defects were generated by electron irradiation, and that the defects responded to annealing. Our results demonstrated that the optical properties of silicon can be controlled by a combination of electron irradiation and hydrogen annealing.

ANALYSIS OF NECKING DEFORMATION AND FRACTURE CHARACTERISTICS OF IRRADIATED A533B RPV STEEL

  • Kim, Jin Weon;Byun, Thak Sang
    • Nuclear Engineering and Technology
    • /
    • 제44권8호
    • /
    • pp.953-960
    • /
    • 2012
  • This paper reports the irradiation effect on the deformation behavior and tensile fracture properties of A533B RPV steel. An inverse identification technique using iterative finite element (FE) simulation was used to determine those properties from tensile data for the A533B RPV steel irradiated at 65 to $100^{\circ}C$ and deformed at room temperature. FE simulation revealed that the plastic instability at yield followed by softening for higher doses was related to the occurrence of localized necking immediately after yielding. The strain-hardening rate in the equivalent true stress-true strain relationship was still positive during the necking deformation. The tensile fracture stress was less dependent on the irradiation dose, whereas the tensile fracture strain and fracture energy decreased with increasing dose level up to 0.1 dpa and then became saturated. However, the tensile fracture strain and fracture energy still remained high after high-dose irradiation, which is associated with a large amount of ductility during the necking deformation for irradiated A533B RPV steel.

STRAIN LOCALIZATION IN IRRADIATED MATERIALS

  • Byun, Thaksang;Hashimoto, Naoyuki
    • Nuclear Engineering and Technology
    • /
    • 제38권7호
    • /
    • pp.619-638
    • /
    • 2006
  • Low temperature irradiation can significantly harden metallic materials and often lead to strain localization and ductility loss in deformation. This paper provides a review on the radiation effects on the deformation of metallic materials, focusing on microscopic and macroscopic strain localization phenomena. The types of microscopic strain localization often observed in irradiated materials are dislocation channeling and deformation twinning, in which dislocation glides are evenly distributed and well confined in the narrow bands, usually a fraction of a micron wide. Dislocation channeling is a common strain localization mechanism observed virtually in all irradiated metallic materials with ductility, while deformation twinning is an alternative localization mechanism occurring only in low stacking fault energy(SFE) materials. In some high stacking fault energy materials where cross slip is easy, curved and widening channels can be formed depending on dose and stress state. Irradiation also prompts macroscopic strain localization (or plastic instability). It is shown that the plastic instability stress and true fracture stress are nearly independent of irradiation dose if there is no radiation-induced phase change or embrittlement. A newly proposed plastic Instability criterion is that the metals after irradiation show necking at yield when the yield stress exceeds the dose-independent plastic instability stress. There is no evident relationship between the microscopic and macroscopic strain localizations; which is explained by the long-range back-stress hardening. It is proposed that the microscopic strain localization is a generalized phenomenon occurring at high stress.

Mechanical Properties of Ultra-High Molecular Weight Polyethylene Irradiated with Gamma Rays

  • Lee, Choon-Soo;Yoo, Seung-Hoo;Jho, Jae-Young;Park, Kuiwon;Hwang, Tae-Won
    • Macromolecular Research
    • /
    • 제12권1호
    • /
    • pp.112-118
    • /
    • 2004
  • With the goal of enhancing the creep resistance of ultra-high molecular weight polyethylene (UHMWPE), we performed gamma irradiation and post-irradiation annealing at a low temperature, and investigated the crystalline structures and mechanical properties of the samples. Electron spin resonance spectra reveal that most of the residual radicals are stabilized by annealing at 100$^{\circ}C$ for 72 h under vacuum. Both the melting temperature and crystallinity increase after increasing the dose and by post-irradiation annealing. When irradiated with the same dose, the quenched sample having a higher amorphous fraction exhibits a lower swell ratio than does the slow-cooled sample. The measured tensile properties correlate well to the crystalline structure of the irradiated and annealed samples. For enhancing creep resistance, high crystallinity appears to be more critical than a high degree of crosslinking.