Amorphization of Silicon by 250 keV Electron Irradiation and Hydrogen Annealing

  • Jo Jung-Yol (Department of Electronics Engineering, Ajou University)
  • Published : 2005.02.01

Abstract

We observed that optical properties of silicon changed under high dose electron irradiation at 250 keV. Our experimental results revealed that the optical transmission through a silicon wafer is significantly increased by electron irradiation. Transmission increase by the change in the absorption coefficient is explained through an analogy with amorphous silicon. Moreover, solar cell open-circuit voltages indicated that defects were generated by electron irradiation, and that the defects responded to annealing. Our results demonstrated that the optical properties of silicon can be controlled by a combination of electron irradiation and hydrogen annealing.

Keywords

References

  1. G. Cocorullo, F. G. Della Corte, I. Rendina, C. Minarini, A. Rubino, and. Terzini, 'Amorphous silicon waveguides and light modulators for integrated photonics realized by low-temperature plasma-enhanced chemical vapor deposition', Opt. Lett., vol. 21, no. 24, pp. 2002-2004, Dec. 1996 https://doi.org/10.1364/OL.21.002002
  2. M. Loncar, T. Doll, J. Vuckovic, and A. Scherer, 'Design and fabrication of silicon photonic crystal optical waveguides', J. of Lightwave Tech., vol. 18, no. 10, pp. 1402-1411, Oct. 2000 https://doi.org/10.1109/50.887192
  3. Y. S. Su and S. T. Pantelides, 'Diffusion mechanism of hydrogen in amorphous silicon: Ab Initio molecular dynamics simulations', Phys. Rev. Lett., vol. 88, no. 16, pp. 165503-165506, Apr. 2002 https://doi.org/10.1103/PhysRevLett.88.165503
  4. For example, S. J. Pearton, J. W. Corbett, M. Stavola, 'Hydrogen in Crystalline Semiconductors', Springer- Verlag, 1991
  5. J. Jo, J. Park, Z. Y. Shen, H. S. Lee, J. H. Lee, and Y. Nishihara, 'Comparison of breakdown behavior in electron-irradiated and proton-irradiated silicon pn junctions', Jpn. J. Appl. Phys., vol. 39, no. 7B, pp. 4660-4662, July 2000 https://doi.org/10.1143/JJAP.39.4660
  6. Z. Y. Shen, H. S. Lee, J. H. Lee, J. Park, H. J. Kim, S. H. Lee, J. Jo, and Y. Nishihara 'Transient breakdown behavior in electron-irradiated and proton-irradiated silicon pn junctions', Appl. Phys. Lett., vol. 76 no. 7, pp. 888-890, Feb. 2000 https://doi.org/10.1063/1.125619
  7. J. Jo, H. J. Kim, Y. Nishihara, H. Suezawa, J. C. Lee, V. Soghomonian, and J. J. Heremans, 'Modification of silicon optical properties by 250 keV electron irradiation', Jpn. J. Appl. Phys., vol. 43, no. 4A, pp. 1237-1240, Apr. 2004 https://doi.org/10.1143/JJAP.43.1237
  8. Ki-Yup Kim, Boo-Hyung Ryu, Chung Lee, and Kee- Joe Lim, 'Radiation effects on gamma-ray irradiated ethylene propylene rubber using dielectric analysis', KIEE Int. Trans. on EA, vol. 3-C, no. 2, pp. 48-54, 2003
  9. Sung-Chae Yang, Byung-Yoon Chu, Seol-Cheol Ko, and Byung-Sung Han, 'Relationship between secondary electron emissions and film thickness of hydrogeneated amorphous silicon', KIEE Int. Trans. on EA, vol. 4-C, no. 4, pp. 185-189, 2004
  10. T. Tabata, P. Andreo, and K. Shinoda, 'An algorithm for depth-dose curves of electrons fitted to Monte Carlo data', Radiat. Phys. Chem., vol. 53, pp. 205- 215, Mar. 1998 https://doi.org/10.1016/S0969-806X(98)00102-9
  11. M. J. A. Dood, A. Polman, T. Zijlstra, E. W. J. M. Drift, 'Amorphous silicon waveguides for microphotonics', J. Appl. Phys., vol. 92, no. 2, pp. 649-653, Jul. 2002 https://doi.org/10.1063/1.1486055
  12. K. Laaziri, S. Kycia, S. Roorda, M. Chicoine, J. L. Robertson, J. Wang, and S. C. Moss, 'High energy xray diffraction study of pure amorphous silicon', Phys. Rev. B vol. 60, no. 19, pp. 13520-13533, Nov. 1999 https://doi.org/10.1103/PhysRevB.60.13520
  13. J. S. Custer, M. O. Thompson, D. C. Jacobson, J. M. Poate, S. Roorda, W. C. Sinke, and F. Spaepen, 'Density of amorphous Si', Appl. Phys. Lett., vol. 64 no. 4, pp. 437-439, Jan. 1994 https://doi.org/10.1063/1.111121