Mechanical Properties of Ultra-High Molecular Weight Polyethylene Irradiated with Gamma Rays

  • Lee, Choon-Soo (Hyperstructured Organic Materials Research Center and School of Chemical Engineering, Seoul National University) ;
  • Yoo, Seung-Hoo (Hyperstructured Organic Materials Research Center and School of Chemical Engineering, Seoul National University) ;
  • Jho, Jae-Young (Hyperstructured Organic Materials Research Center and School of Chemical Engineering, Seoul National University) ;
  • Park, Kuiwon (Biomedical Research Center, Korea Institute of Science and Technology) ;
  • Hwang, Tae-Won (Research and Development Division for Hyundai Motor Company and Kia Motors Corporation)
  • Published : 2004.02.01

Abstract

With the goal of enhancing the creep resistance of ultra-high molecular weight polyethylene (UHMWPE), we performed gamma irradiation and post-irradiation annealing at a low temperature, and investigated the crystalline structures and mechanical properties of the samples. Electron spin resonance spectra reveal that most of the residual radicals are stabilized by annealing at 100$^{\circ}C$ for 72 h under vacuum. Both the melting temperature and crystallinity increase after increasing the dose and by post-irradiation annealing. When irradiated with the same dose, the quenched sample having a higher amorphous fraction exhibits a lower swell ratio than does the slow-cooled sample. The measured tensile properties correlate well to the crystalline structure of the irradiated and annealed samples. For enhancing creep resistance, high crystallinity appears to be more critical than a high degree of crosslinking.

Keywords

References

  1. J. Biomed. Mater. Res. v.38 G.Lewis https://doi.org/10.1002/(SICI)1097-4636(199721)38:1<55::AID-JBM8>3.0.CO;2-G
  2. Biomaterials v.20 S.M.Kurtz;O.K.Muratoglu;M.Evans;A.A.Edidin https://doi.org/10.1016/S0142-9612(99)00053-8
  3. J. Polym. Sci., Polym. Chem. Ed. v.36 B.Yeom;Y.J.Yu;H.A.McKellop;R.Salovey https://doi.org/10.1002/(SICI)1099-0518(19980130)36:2<329::AID-POLA16>3.0.CO;2-Q
  4. Radiat. Phys. Chem. v.62 M.S.Jahan;M.C.King;W.O.Haggard;K.L.Sevo;J.E.Parr https://doi.org/10.1016/S0969-806X(01)00431-5
  5. J. Orthop. Res. v.17 H.McKellop;F.Shen;B.Lu;P.Campbell;R.Salovey https://doi.org/10.1002/jor.1100170203
  6. J. Biomed. Mater. Res. v.50 R.Chiesa;M.C.Tanzi;S.Alfonsi;L.Paraccjini;M.Moscatelli;A.Cigada https://doi.org/10.1002/(SICI)1097-4636(20000605)50:3<381::AID-JBM12>3.0.CO;2-P
  7. Polymer v.40 V.Premnath;A.Bellare;E.W.Merrill;M.Jasty;W.H.Harris https://doi.org/10.1016/S0032-3861(98)00438-8
  8. Radiat. Phys. Chem. v.60 P.H.Kang;Y.C.Nho https://doi.org/10.1016/S0969-806X(00)00333-9
  9. J. Macromol. Sci. R.M.C. v.C35 S.K.Bhateja;R.W.Duerst;J.A.Martens;E.H.Andrews
  10. J. Appl. Polym. Sci. v.38 C.Birkinshaw;M.Buggy;S.Daly;M.ONeill https://doi.org/10.1002/app.1989.070381101
  11. Macromol. Res. v.10 J.Bolze;J.Kim;J.Y.Huang;S.Rah;H.S.Youn;B.Lee;T.J.Shin;M.Rhee https://doi.org/10.1007/BF03218282
  12. J. Polym. Sci. Polym. Phys. Ed. v.18 G.R.Strobl;M.J.Schneider https://doi.org/10.1002/pol.1980.180180614
  13. J. Polym. Sci. Polym. Phys. Ed. v.14 A.P.de Boer;A.J.Pennings https://doi.org/10.1002/pol.1976.180140201
  14. Macromolecules v.10 J.Maxfield;L.Mandelkern https://doi.org/10.1021/ma60059a046
  15. Polymer Physics U.W.Gedde
  16. J. Appl. Cryst. v.24 W.Wilke;M.Bratrich https://doi.org/10.1107/S0021889890013243
  17. Polymer v.39 M.F.Butler;A.M.Donald;A.J.Ryan https://doi.org/10.1016/S0032-3861(97)00226-7
  18. J. Mater. Sci. v.29 L.Lin;A.S.Argon https://doi.org/10.1007/BF01162485
  19. Macromolecules v.27 M.A.Kennedy;A.J.Peacock;L.Mandelkern https://doi.org/10.1021/ma00097a009
  20. Macromol. Res. C.S.Lee;J.Y.Jho;K.Choi;T.W.Hwang
  21. J. Polym. Sci., Part B:Polym. Phys. v.33 J.J.Strebel;A.Moet https://doi.org/10.1002/polb.1995.090331312
  22. Polymer v.41 N.W.Brooks;M.Mukhtar https://doi.org/10.1016/S0032-3861(99)00362-6