• 제목/요약/키워드: high Xe discharge

검색결과 68건 처리시간 0.024초

Analysis of the luminous efficacy improvement in Full HD ac Plasma Display Panel

  • Bae, Hyun-Sook;Whang, Ki-Woong
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 한국정보디스플레이학회 2007년도 7th International Meeting on Information Display 제7권1호
    • /
    • pp.29-32
    • /
    • 2007
  • We analyzed the effect of cell resolution on the luminous efficacy through three-dimensional numerical simulation to understand the inherent discharge mechanism change in the plasma display panel. As the resolution increases from VGA to Full HD, the luminous efficacy decreases. With higher Xe content, VUV generation efficacy of Full HD becomes much lower than those of VGA or XGA cells, due to the increased plasma loss and lower electron heating. However a long electrode gap $140{\mu}m$ in Full HD cell with Ne-Xe [20%] results in the high luminous efficacy comparable to that of the XGA cell with $60{\mu}m$ gap. When comparing the effects of Xe content variation on the luminous efficacy of two different subpixel types, i. e., SDE (Segmented electrode in Delta color arrayed, Enclosed subpixel) [1] and conventional stripe barrier type in the XGA and Full HD cells, the luminous efficacy of SDE structure shows higher improvement in Full HD resolution compared with that of conventional type XGA cell, whose cause is identified as the reduced plasma loss.

  • PDF

LCD 백라이트용 면방전형 FFL의 방전 특성 (Discharge Characteristics of Surface Discharge Type FFL for LCD Backlighting)

  • 임민수;윤성현;신유섭;정득영;권순석;임기조
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1999년도 하계학술대회 논문집 D
    • /
    • pp.1786-1788
    • /
    • 1999
  • In this paper, we studied Surface Discharge Type Flat Fluorescent Lamp with High Luminance for LCD Backlighting, Liquid Crystal display(LCDs) demand the use of fluorescent lamp as the backlighting source. This lamp is Surface Discharge Type structure with a pair of Sodalime glass, insulator layer, phosphor layer, and Xe gas gap. In spite of its simple structure, the lamp has uniform and stable discharge over entire volume. Till now, we measured the current-voltage(V-I), Firing Voltage, Sustain Voltage for 0.5mm, 1mm electrode gap. In experiment result, long gap cell structure cause high firing voltage. The rising in firing voltage in long gap structure could not be explained by paschen's law because of non-uniform electric field.

  • PDF

Dual Address Electrodes for Fast Addressing Method of ac-PDP with High Xe% Working Gas

  • Lee, D.K.;Choi, J.H.;Choi, W.S.;Ok, J.W.;Kwon, B.S.;Lee, H.J.;Lee, H.J.;Kim, D.H.;Park, C.H.
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 한국정보디스플레이학회 2005년도 International Meeting on Information Displayvol.I
    • /
    • pp.247-250
    • /
    • 2005
  • In this paper, new address electrode having separated dual electrodes is suggested to reduce addressing time in ac PDP. It had been found that both the formative and jitter width of the suggested electrode are improved by $10{\sim}20$ % compared with the conventional one on IMID 04'. So we experiment other several kinds of the separated electrodes, and the change in discharge characteristics is analyzed by using a two-dimensional fluid simulation. The key feature of the suggested structure is that the distribution of Xe and Ne ion is controllable during the address periods without significant increases in the capacitive load of the address electrodes.

  • PDF

New PDP cell structure for high luminous efficacy with low voltage driving

  • Jung, Hae-Yoon;Kim, Tae-Jun;Whang, Ki-Woong
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 한국정보디스플레이학회 2006년도 6th International Meeting on Information Display
    • /
    • pp.480-484
    • /
    • 2006
  • We propose a new PDP cell structure named DIDE (Dual Ignition Discharge Electrodes) structure with a long electrode gap to realize a high luminous efficacy. Suggested DIDE structure basically has a long electrode gap $(200{\mu}m{\sim}400{\mu}m)$, nevertheless, because of auxiliary electrodes formed on the front panel, can be driven at relatively low voltage. The discharge characteristic of DIDE structure was much different from that of conventional structure, which was analyzed by IR emission images using IICCD (Image Intensified Charge Coupled Device). The study can explain some particular characteristics of DIDE structure. As a result, the long electrode gap and low voltage effect can be expected in DIDE structure, and a very high luminous efficacy of 7.5 lm/W has been achieved in monochrome green test panel adopting the new cell structure with Ne-Xe (12%) mixture at 400 torr.

  • PDF

교류형 플라즈마 평판 표시장치(AC-PDP)에서 ITO 전극 구조에 따른 Xe 여기종의 시공간 밀도 분포 연구 (Measurement of Spatiotemporal Distribution for the Density of Excited Xe Atoms in the 1s5 in Accordance with Various ITO-shapes in Ac-PDP)

  • 조석호;홍영준;손창길;한용규;정용환;권기청;홍병희;조광섭;최은하
    • 한국진공학회지
    • /
    • 제18권1호
    • /
    • pp.54-59
    • /
    • 2009
  • 3전극 면방전형 AC-PDP에서 발광효율을 높이기 위한 방법으로 새로운 구조의 ITO전극을 제안하였다. 기존에 사용하고 있는 사각형(square), T 형태의 ITO 전극구조와 새롭게 설계한 물고기뼈 형태(fish-boned type) ITO 전극 구조의 시험패널을 제작하였다. 레이저 흡수 분광법(Laser absorption spectroscopy)을 이용하여 각 ITO 전극 구조에 따라 Xe 여기종의 밀도분포를 측정하고, 고속 ICCD(Image Intensified Charge-Coupled Diode) 카메라를 이용하여 각각의 전극에 따른 $750\;nm\;{\sim}\;900\;nm$ 파장의 방전모습을 확인하였다. 시험패널 상판의 x, f 전극에 220V의 사각펄스(square pulse)를 교대로 인가하여 방전시켰다. 사각형, T 그리고 물고기뼈 형태의 ITO 전극 구조에서 $X_e$ 여기종 밀도는 각각 $2.06{\times}10^{13}\;cm^{-3}$, $2.66{\times}10^{-3}\;cm^{-3}$$3.01{\times}10^{13}\;cm^{-3}$으로 물고기뼈 형태에서 가장 높게 측정되었다.

High Efficacy AC-PDP toward 10 lm/W

  • Choi, Kyung-Cheol;Lee, Seung-Tae;Shin, Nam-Hoon;Lee, Seong-Min;Song, Sang-Cheol;Yun, Jin-Bhum;Shin, Bhum-Jae
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 한국정보디스플레이학회 2006년도 6th International Meeting on Information Display
    • /
    • pp.7-12
    • /
    • 2006
  • The high efficacy concept, featuring in this study an auxiliary electrode and a 200 ${\mu}m$ coplanar gap, is applied to AC-PDPs with a stripe - type and a closed - type barrier rib, respectively. The roles of the pulses applied to the auxiliary electrode create additional excitation during the sustain period and reduce a discharge current that flows into the display cells. The efficacy of the proposed panel with the closed barrier rib has maximum values when the auxiliary pulse voltage is 50 volts and 80 volts for the Ne+4%Xe and Ne+20%Xe gas-mixtures, respectively. The maximum luminous efficacy is more than 10 lm/W in terms of the measurement of the discharges in VGA resolution ($540{\mu}m{\times}720{\mu}m$) and the green cells.

  • PDF

AC PDP의 오방전 개선을 위한 어드레스 방전 특성 연구 (Study on the Address Discharge Characteristics for the Improvement of the Mis-firing Problem in AC PDP)

  • 전원재;김동훈;이석현
    • 전기학회논문지
    • /
    • 제58권6호
    • /
    • pp.1151-1156
    • /
    • 2009
  • Unstable sustain discharges can occur at the bottom cells of the panel at high temperature. To solve this problem, the wall charge variation during an address period was investigated. A test panel of 7.5 inch XGA level was used and one green cell was measured. In order to realize operating condition equal to that of the bottom cells of 50 inch panel, the addressing stress pulses are applied. It seems that the resultant wall charge loss during address period increased with increase of stress time, temperature, pressure and Xe %. Wall charge loss increases with potential difference between scan electrode and address electrode, therefore wall charge loss can be minimized by the increase of scan voltage during address period.

Research and Development of High Performance 50-inch HD Plasma Display Panel

  • Choi, Kwang-Yeol;Min, Woong-Kee;Rhee, Byung-Joon;Ahn, Byung-Nam;Kim, Je-Seok;Moon, Won-Seok;Park, Min-Soo;Ryu, Byung-Gil;Kim, Sung-Tae;Ahn, Young-Joon;Yang, Sung-Soo;Kim, Kyung-Tae;Lee, Kyu-Sung
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 한국정보디스플레이학회 2008년도 International Meeting on Information Display
    • /
    • pp.1547-1550
    • /
    • 2008
  • We are suggesting a new index to represent the performance of PDP, such as Specific Performance Index (SPI) that includes luminous efficacy and panel reflectance. High Xe gas mixture and low panel capacitance are well known as key factors to improve luminous efficacy of PDP [1]. However, higher driving voltage and longer discharge time lag is an obstacle when applying these technologies. Modified cell design, new materials and driving waveform enable us to overcome these obstacles. High efficient phosphor is also a key material to improve luminous efficacy. Phosphors coated with pigment are used to reduce panel reflectance. High performance 50-inch HD PDP with luminous efficacy of 2.3 lm/W has been developed.

  • PDF

새로운 Fence 전극 구조에 의한 ac-PDP 효율 개선에 관한 연구 (A Study on the Improvement of the luminous Efficiency in ac-PDP with New Fence Structure)

  • 권비수;옥정우;김현종;이돈규;김동현;이호준;박정후
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2005년도 추계학술대회 논문집 전기물성,응용부문
    • /
    • pp.201-203
    • /
    • 2005
  • To improvement the performance of PDPs, we developed an ac-PDP with new fence structure. By measuring minimum sustaining voltage(Vs), discharge current(Ion), discharge(Ioff), and brightness of the light from a 4-inch at-PDP, performances of the conventional structure and proposed structure are compared. The experimental results show that the test panel with the proposed new fence structure shows high luminance by 10%, and high luminous efficiency by 30% compared with the conventional structure at the Ne-Xe(8%) gas mixture of 400 torr.

  • PDF

새로운 전극 구조에 의한 ac-PDP 효율개선에 관한 연구 (A study on the improvement of the luminous efficiency with new electrode structure in ac-PDPs)

  • 권비수;박현동;조용성;이돈규;신중홍;이해준;이호준;박정후
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2005년도 제36회 하계학술대회 논문집 C
    • /
    • pp.2169-2171
    • /
    • 2005
  • A new structure is proposed to achieve a low sustaining voltage and high luminous efficacy. By measuring minimum sustaining voltage(Vs) discharge current(Ion), discharge(Ioff), and brightness of the light from a 4-inch ac-PDP, performances of the conventional structure and proposed structure are compared. When compared with the conventional structure, proposed structure showed 6.5% Vsm improvement, 22% luminance improvement and 20% light dispersion improvement at the Ne-Xe(8%) gas mixture of 400 torr.

  • PDF