• 제목/요약/키워드: high $O_2$

검색결과 12,444건 처리시간 0.043초

ALD ZnO 버퍼층 증착 온도가 전착 Cu2O 박막 태양전지 소자 특성에 미치는 영향 (The Influence of Deposition Temperature of ALD n-type Buffer ZnO Layer on Device Characteristics of Electrodeposited Cu2O Thin Film Solar Cells)

  • 조재유;트란 휴 만;허재영
    • Current Photovoltaic Research
    • /
    • 제6권1호
    • /
    • pp.21-26
    • /
    • 2018
  • Beside several advantages, the PV power generation as a clean energy source, is still below the supply level due to high power generation cost. Therefore, the interest in fabricating low-cost thin film solar cells is increasing continuously. $Cu_2O$, a low cost photovoltaic material, has a wide direct band gap of ~2.1 eV has along with the high theoretical energy conversion efficiency of about 20%. On the other hand, it has other benefits such as earth-abundance, low cost, non-toxic, high carrier mobility ($100cm^2/Vs$). In spite of these various advantages, the efficiency of $Cu_2O$ based solar cells is still significantly lower than the theoretical limit as reported in several literatures. One of the reasons behind the low efficiency of $Cu_2O$ solar cells can be the formation of CuO layer due to atmospheric surface oxidation of $Cu_2O$ absorber layer. In this work, atomic layer deposition method was used to remove the CuO layer that formed on $Cu_2O$ surface. First, $Cu_2O$ absorber layer was deposited by electrodeposition. On top of it buffer (ZnO) and TCO (AZO) layers were deposited by atomic layer deposition and rf-magnetron sputtering respectively. We fabricated the cells with a change in the deposition temperature of buffer layer ranging between $80^{\circ}C$ to $140^{\circ}C$. Finally, we compared the performance of fabricated solar cells, and studied the influence of buffer layer deposition temperature on $Cu_2O$ based solar cells by J-V and XPS measurements.

A STUDY ON THE RELATIONSHIP BETWEEN PLASMA CHARACTERISTICS AND FILM PROPERTIES FOR MgO BY PULSED DC MAGNETRON SPUTTERING

  • Nam, Kyung H.;Chung, Yun M.;Han, Jeon G.
    • 한국표면공학회:학술대회논문집
    • /
    • 한국표면공학회 2001년도 추계학술발표회 초록집
    • /
    • pp.35-35
    • /
    • 2001
  • agnesium Oxide (MgO) with a NaCI structure is well known to exhibit high secondary electron emission, excellent high temperature chemical stability, high thermal conductance and electrical insulating properties. For these reason MgO films have been widely used for a buffer layer of high $T_c$ superconducting and a protective layer for AC-plasma display panels to improve discharge characteristics and panel lifetime. Up to now MgO films have been synthesized by lE-beam evaporation, Molecular Beam Epitaxy (MBE) and Metalorganic Chemical Vapor Deposition (MOCVD), however there have been some limitations such as low film density and micro-cracks in films. Therefore magnetron sputtering process were emerged as predominant method to synthesis high density MgO films. In previous works, we designed and manufactured unbalanced magnetron source with high power density for the deposition of high quality MgO films. The magnetron discharges were sustained at the pressure of O.lmtorr with power density of $110W/\textrm{cm}^2$ and the maximum deposition rate was measured at $2.8\mu\textrm{m}/min$ for Cu films. In this study, the syntheses of MgO films were carried out by unbalanced magnetron sputtering with various $O_2$ partial pressure and specially target power densities, duty cycles and frequency using pulsed DC power supply. And also we investigated the plasma states with various $O_2$ partial pressure and pulsed DC conditions by Optical Emission Spectroscopy (OES). In order to confirm the relationships between plasma states and film properties such as microstructure and secondary electron emission coefficient were analyzed by X-Ray Diffraction(XRD), Transmission Electron Microscopy(TEM) and ${\gamma}-Focused$ Ion Beam (${\gamma}-FIB$).

  • PDF

Memory Characteristics of High Density Self-assembled FePt Nano-dots Floating Gate with High-k $Al_2O_3$ Blocking Oxide

  • Lee, Gae-Hun;Lee, Jung-Min;Yang, Hyung-Jun;Kim, Kyoung-Rok;Song, Yun-Heub
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2012년도 제42회 동계 정기 학술대회 초록집
    • /
    • pp.388-388
    • /
    • 2012
  • In this letter, We have investigated cell characteristics of the alloy FePt-NDs charge trapping memory capacitors with high-k $Al_2O_3$ dielectrics as a blocking oxide. The capacitance versus voltage (C-V) curves obtained from a representative MOS capacitor embedded with FePt-NDs synthesized by the post deposition annealing (PDA) treatment process exhibit the window of flat-band voltage shift, which indicates the presence of charge storages in the FePt-NDs. It is shown that NDs memory with high-k $Al_2O_3$ as a blocking oxide has performance in large memory window and low leakage current when the diameter of ND is below 2 nm. Moreover, high-k $Al_2O_3$ as a blocking oxide increases the electric field across the tunnel oxide, while reducing the electric field across the blocking layer. From this result, this device can achieve lower P/E voltage and lower leakage current. As a result, a FePt-NDs device with high-k $Al_2O_3$ as a blocking oxide obtained a~7V reduction in the programming voltages with 7.8 V memory.

  • PDF

The Study on the Fabrication and Characterization of Dielectric Materials of Front and Back Panel for PDP(Plasma Display Panel)

  • Chang, Myeong-Soo;Lee, Yoon-Kwan;Ryu, Byung-Gil;Park, Myung-Ho
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 한국정보디스플레이학회 2000년도 제1회 학술대회 논문집
    • /
    • pp.181-182
    • /
    • 2000
  • The glass compositions of $PbO-SiO_2-B_2O_3$ system and $P_2O_5-PbO-ZnO$ system for the transparent dielectric materials for front panel and $P_2O_5-ZnO-BaO$ and $SiO_2-ZnO-B_2O_3$ for the reflective dielectric materials for back panel of PDP(Plasma Display Panel) were investigated. As a transparent dielectric materials for front panel, $PbO-SiO_2-B_2O_3$ glass showed good dielectric properties, high transparency and proper thermal expansion matching to soda-lime glass substrate. And the reflective dielectric materials for back panel were prepared from parent glass of $SiO_2-ZnO-B_2O_3$ system and oxide filler. It was found that these glass-ceramics are useful materials for reflective dielectric layers, as those have a similar thermal expansion to soda-lime glass plate, high reflectance, low sintering temperature.

  • PDF

ZnO-Fe2O3 복합금속 산화물을 이용한 고온에서의 황화수소 제거에 관한 연구 (High Temperature Desulfurization over ZnO-Fe2O3 Mixed Metal Oxide Sorbent)

  • 이재복;이영수;류경옥
    • 한국환경보건학회지
    • /
    • 제20권1호
    • /
    • pp.62-67
    • /
    • 1994
  • ZnO-$Fe_2O_3$ 복합금속 산화물 흡착제가 황화수소 제거능이나 황화된 흡착제의 산화적 재생반응에 미치는 영향을 고찰하였다. Zinc ferrite 흡착제가 가장 높은 황화수소 제거능을 나타내었고 혼합한 $Fe_2O_3$ 흡착제는 황화반응 도중 H$_2$S의 생성을 촉진시킴을 알 수 있었다. 또한 황화반응의 결과로 생성되는 금속황화물들이 H$_2$S 열분해의 촉매로 작용하였으며 H$_2$$Fe_2O_3$의 함량이 증가할수록 더 많이 발생하였다. 산화적 재생반응의 결과로부터 ZnS를 제외하고 $Fe_2O_3$를 혼합한 흡착제는 모두 잘 재생됨을 알 수 있었다. 또한 산화적 재생반응 도중 생성될 수 있다고 보고된 zinc sulfate는 생성되지 않았다. 그리고 SO$_2$ 발생 곡선의 형태나 완전재생에 소요되는 시간을 기준으로 판단해 볼 때 $Fe_2O_3$의 혼합량의 변화는 산화적 재생반응에 별다른 영향을 미치지 않음을 알 수 있었다.

  • PDF

$SiO_2/HfO_2/Al_2O_3$ (OHA) 터널 장벽의 열처리 조건에 따른 전기적 특성 (Electrical characteristic of $SiO_2/HfO_2/Al_2O_3$ (OHA) as engineered tunnel barrier with various heat treatment condition)

  • 손정우;조원주
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2010년도 하계학술대회 논문집
    • /
    • pp.344-344
    • /
    • 2010
  • A capacitor with engineered tunnel barrier composed of High-k materials has been fabricated. Variable oxide thickness (VARIOT) barrier consisting of thin SiO2/HfO2/Al2O3 (2/1/3 nm) dielectric layers were used as engineered tunneling barrier. We studied the electrical characteristics of multi stacked tunnel layers for various RTA (Rapid Thermal Anneal) and FGA (Forming Gas Anneal) temperature.

  • PDF

Electrochemical Catalytic Behavior of Cu2O Catalyst for Oxygen Reduction Reaction in Molten Carbonate Fuel Cells

  • Song, Shin Ae;Kim, Kiyoung;Lim, Sung Nam;Han, Jonghee;Yoon, Sung Pil;Kang, Min-Goo;Jang, Seong-Cheol
    • Journal of Electrochemical Science and Technology
    • /
    • 제9권3호
    • /
    • pp.195-201
    • /
    • 2018
  • To enhance the performance of cathodes at low temperatures, a Cu-coated cathode is prepared, and its electrochemical performance is examined by testing its use in a single cell. At $620^{\circ}C$ and a current density of $150mAcm^{-2}$, a single cell containing the Cu-coated cathode has a significantly higher voltage (0.87 V) during the initial operation than does that with an uncoated cathode (0.79 V). According to EIS analysis, the high voltage of the cell with the Cu-coated cathode is due to the dramatic decrease in the high-frequency resistance related to electrochemical reactions. From XPS analysis, it is confirmed that the Cu is initially in the form of $Cu_2O$ and is converted into CuO after 150 h of operation, without any change in the state of the Ni or Li. Therefore, the high initial cell voltage is confirmed to be due to $Cu_2O$. Because $Cu_2O$ is catalytically active toward $O_2$ adsorption and dissociation, $Cu_2O$ on a NiO cathode enhances cell performance and reduces cathode polarization. However, the cell with the Cu-coated cathode does not maintain its high voltage because $Cu_2O$ is oxidized to CuO, which demonstrates similar catalytic activity toward $O_2$ as NiO.

R-면 사파이어 기판 위에 플라즈마 분자선 에피탁시법을 이용한 산화아연 박막의 성장 및 특성평가 (Growth and Characterization of ZnO Thin Films on R-plane Sapphire Substrates by Plasma Assisted Molecular Beam Epitaxy)

  • 한석규;홍순구;이재욱;이정용
    • 한국전기전자재료학회논문지
    • /
    • 제19권10호
    • /
    • pp.923-929
    • /
    • 2006
  • Single crystalline ZnO films were successfully grown on R-plane sapphire substrates by plasma-assisted molecular beam epitaxy. Epitaxial relationship between the ZnO film and the R-plane sapphire was determined to be $[-1101]Al_2O_3{\parallel}[0001]ZnO,\;[11-20]Al_2O_2{\parallel}[-1100]ZnO$ based on the in-situ reflection high-energy electron diffraction analysis and confirmed again by high-resolution X-ray diffraction measurements. Grown (11-20) ZnO films surface showed mound-like morphology along the <0001>ZnO direction and the RMS roughness was about 4 nm for $2{\mu}m{\times}2{\mu}m$ area.

고에너지밀도 캐패시터를 위해 PET 기판에 증착한 TiO2 박막의 특성 (Properties of TiO2 Thin Films Deposited on PET Substrate for High Energy Density Capacitor)

  • 박상식
    • 한국재료학회지
    • /
    • 제22권8호
    • /
    • pp.409-415
    • /
    • 2012
  • $TiO_2$ thin films for high energy density capacitors were prepared by r.f. magnetron sputtering at room temperature. Flexible PET (Polyethylene terephtalate) substrate was used to maintain the structure of the commercial film capacitors. The effects of deposition pressure on the crystallization and electrical properties of $TiO_2$ films were investigated. The crystal structure of $TiO_2$ films deposited on PET substrate at room temperature was unrelated to deposition pressure and showed an amorphous structure unlike that of films on Si substrate. The grain size and surface roughness of films decreased with increasing deposition pressure due to the difference of mean free path. X-ray photoelectron spectroscopy (XPS) analysis revealed the formation of chemically stable $TiO_2$ films. The dielectric constant of $TiO_2$ films was significantly changed with deposition pressure. $TiO_2$ films deposited at low pressure showed high dissipation factor due to the surface microstructure. The dielectric constant and dissipation factor of films deposited at 70 mTorr were found to be 100~120 and 0.83 at 1 kHz, respectively. The temperature dependence of the capacitance of $TiO_2$ films showed the properties of class I ceramic capacitors. $TiO_2$ films deposited at 10~30 mTorr showed dielectric breakdown at applied voltage of 7 V. However, the films of 500~300 nm thickness deposited at 50 and 70 mTorr showed a leakage current of ${\sim}10^{-8}{\sim}10^{-9}$ A at 100 V.

Simple Synthesis of SiOx by High-Energy Ball Milling as a Promising Anode Material for Li-Ion Batteries

  • Sung Joo, Hong;Seunghoon, Nam
    • Corrosion Science and Technology
    • /
    • 제21권6호
    • /
    • pp.445-453
    • /
    • 2022
  • SiOx was prepared from a mixture of Si and SiO2 via high-energy ball milling as a negative electrode material for Li-ion batteries. The molar ratio of Si to SiO2 as precursors and the milling time were varied to identify the synthetic condition that could exhibit desirable anode performances. With an appropriate milling time, the material showed a unique microstructure in which amorphous Si nanoparticles were intimately embedded within the SiO2 matrix. The interface between the Si and SiO2 was composed of silicon suboxides with Si oxidation states from 0 to +4 as proven by X-ray photoelectron spectroscopy and electrochemical analysis. With the addition of a conductive carbon (Super P carbon black) as a coating material, the SiOx/C manifested superior specific capacity to a commercial SiOx/C composite without compromising its cycle-life performance. The simple mechanochemical method described in this study will shed light on cost-effective synthesis of high-capacity silicon oxides as promising anode materials.