• 제목/요약/키워드: hierarchical error estimator

검색결과 10건 처리시간 0.024초

HIERARCHICAL ERROR ESTIMATORS FOR LOWEST-ORDER MIXED FINITE ELEMENT METHODS

  • Kim, Kwang-Yeon
    • Korean Journal of Mathematics
    • /
    • 제22권3호
    • /
    • pp.429-441
    • /
    • 2014
  • In this work we study two a posteriori error estimators of hierarchical type for lowest-order mixed finite element methods. One estimator is computed by solving a global defect problem based on the splitting of the lowest-order Brezzi-Douglas-Marini space, and the other estimator is locally computable by applying the standard localization to the first estimator. We establish the reliability and efficiency of both estimators by comparing them with the standard residual estimator. In addition, it is shown that the error estimator based on the global defect problem is asymptotically exact under suitable conditions.

A posteriori error estimator for hierarchical models for elastic bodies with thin domain

  • Cho, Jin-Rae
    • Structural Engineering and Mechanics
    • /
    • 제8권5호
    • /
    • pp.513-529
    • /
    • 1999
  • A concept of hierarchical modeling, the newest modeling technology, has been introduced in early 1990's. This new technology has a great potential to advance the capabilities of current computational mechanics. A first step to implement this concept is to construct hierarchical models, a family of mathematical models sequentially connected by a key parameter of the problem under consideration and have different levels in modeling accuracy, and to investigate characteristics in their numerical simulation aspects. Among representative model problems to explore this concept are elastic structures such as beam-, arch-, plate- and shell-like structures because the mechanical behavior through the thickness can be approximated with sequential accuracy by varying the order of thickness polynomials in the displacement or stress fields. But, in the numerical, analysis of hierarchical models, two kinds of errors prevail, the modeling error and the numerical approximation error. To ensure numerical simulation quality, an accurate estimation of these two errors is definitely essential. Here, a local a posteriori error estimator for elastic structures with thin domain such as plate- and shell-like structures is derived using the element residuals and the flux balancing technique. This method guarantees upper bounds for the global error, and also provides accurate local error indicators for two types of errors, in the energy norm. Compared to the classical error estimators using the flux averaging technique, this shows considerably reliable and accurate effectivity indices. To illustrate the theoretical results and to verify the validity of the proposed error estimator, representative numerical examples are provided.

A POSTERIORI ERROR ESTIMATOR FOR HIERARCHICAL MODELS FOR ELASTIC BODIES WITH THIN DOMAIN

  • Cho, Jin-Rae;J. Tinsley Oden
    • Journal of Theoretical and Applied Mechanics
    • /
    • 제3권1호
    • /
    • pp.16-33
    • /
    • 2002
  • A concept of hierarchical modeling, the newest modeling technology. has been introduced early In 1990. This nu technology has a goat potential to advance the capabilities of current computational mechanics. A first step to Implement this concept is to construct hierarchical models, a family of mathematical models which are sequentially connected by a key parameter of the problem under consideration and have different levels in modeling accuracy, and to investigate characteristics In their numerical simulation aspects. Among representative model problems to explore this concept are elastic structures such as beam-, arch-. plate- and shell-like structures because the mechanical behavior through the thickness can be approximated with sequential accuracy by varying the order of thickness polynomials in the displacement or stress fields. But, in the numerical analysis of hierarchical models, two kinds of errors prevail: the modeling error and the numerical approximation errors. To ensure numerical simulation quality, an accurate estimation of these two errors Is definitely essential. Here, a local a posteriori error estimator for elastic structures with thin domain such as plate- and shell-like structures Is derived using element residuals and flux balancing technique. This method guarantees upper bounds for the global error, and also provides accurate local error Indicators for two types of errors, in the energy norm. Comparing to the classical error estimators using flux averaging technique, this shows considerably reliable and accurate effectivity indices. To illustrate the theoretical results and to verify the validity of the proposed error estimator, representative numerical examples are provided.

  • PDF

Bayes Estimation in a Hierarchical Linear Model

  • Park, Kuey-Chung;Chang, In-Hong;Kim, Byung-Hwee
    • Journal of the Korean Statistical Society
    • /
    • 제27권1호
    • /
    • pp.1-10
    • /
    • 1998
  • In the problem of estimating a vector of unknown regression coefficients under the sum of squared error losses in a hierarchical linear model, we propose the hierarchical Bayes estimator of a vector of unknown regression coefficients in a hierarchical linear model, and then prove the admissibility of this estimator using Blyth's (196\51) method.

  • PDF

A P-HIERARCHICAL ERROR ESTIMATOR FOR A FEM-BEM COUPLING OF AN EDDY CURRENT PROBLEM IN ℝ3 -DEDICATED TO PROFESSOR WOLFGANG L. WENDLAND ON THE OCCASION OF HIS 75TH BIRTHDAY

  • Leydecker, Florian;Maischak, Matthias;Stephan, Ernst P.;Teltscher, Matthias
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • 제17권3호
    • /
    • pp.139-170
    • /
    • 2013
  • We extend a p-hierarchical decomposition of the second degree finite element space of N$\acute{e}$d$\acute{e}$lec for tetrahedral meshes in three dimensions given in [1] to meshes with hexahedral elements, and derive p-hierarchical decompositions of the second degree finite element space of Raviart-Thomas in two dimensions for triangular and quadrilateral meshes. After having proved stability of these subspace decompositions and requiring certain saturation assumptions to hold, we construct a local a posteriori error estimator for fem and bem coupling of a time-harmonic electromagnetic eddy current problem in $\mathbb{R}^3$. We perform some numerical tests to underline reliability and efficiency of the estimator and test its usefulness in an adaptive refinement scheme.

A correction of SE from penalized partial likelihood in frailty models

  • Ha, Il-Do
    • Journal of the Korean Data and Information Science Society
    • /
    • 제20권5호
    • /
    • pp.895-903
    • /
    • 2009
  • The penalized partial likelihood based on restricted maximum likelihood method has been widely used for the inference of frailty models. However, the standard-error estimate for frailty parameter estimator can be downwardly biased. In this paper we show that such underestimation can be corrected by using hierarchical likelihood. In particular, the hierarchical likelihood gives a statistically efficient procedure for various random-effect models including frailty models. The proposed method is illustrated via a numerical example and simulation study. The simulation results demonstrate that the corrected standard-error estimate largely improves such bias.

  • PDF

Admissible Hierarchical Bayes Estimators of a Multivariate Normal Mean Shrinking towards a Regression Surface

  • Cho, Byung-Yup;Choi, Kuey-Chung;Chang, In-Hong
    • Communications for Statistical Applications and Methods
    • /
    • 제3권2호
    • /
    • pp.205-216
    • /
    • 1996
  • Consider the problem of estimating a multivariate normal mean with an unknown covarience matrix under a weighted sum of squared error losses. We first provide hierarchical Bayes estimators which shrink the usual (maximum liklihood, uniformly minimum variance unbiased) estimator towards a regression surface and then prove the admissibility of these estimators using Blyth's (1951) method.

  • PDF

수정 SPR 기법에 의한 휨을 받는 평판문제의 적응적 p-체눈 세분화 (p-Adaptive Mesh Refinement of Plate Bending Problem by Modified SPR Technique)

  • 조준형;이희정;우광성
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 2007년도 정기 학술대회 논문집
    • /
    • pp.481-486
    • /
    • 2007
  • The Zienkiewicz-Zhu(Z/Z) error estimate is slightly modified for the hierarchical p-refinement, and is then applied to L-shaped plates subjected to bending to demonstrate its effectiveness. An adaptive procedure in finite element analysis is presented by p-refinement of meshes in conjunction with a posteriori error estimator that is based on the superconvergent patch recovery(SPR) technique. The modified Z/Z error estimate p-refinement is different from the conventional approach because the high order shape functions based on integrals of Legendre polynomials are used to interpolate displacements within an element, on the other hand, the same order of basis function based on Pascal's triangle tree is also used to interpolate recovered stresses. The least-square method is used to fit a polynomial to the stresses computed at the sampling points. The strategy of finding a nearly optimal distribution of polynomial degrees on a fixed finite element mesh is discussed such that a particular element has to be refined automatically to obtain an acceptable level of accuracy by increasing p-levels non-uniformly or selectively. It is noted that the error decreases rapidly with an increase in the number of degrees of freedom and the sequences of p-distributions obtained by the proposed error indicator closely follow the optimal trajectory.

  • PDF

휨을 받는 L-형 평판의 적응적 세분화를 위한 선택적 p-분배 (The Selective p-Distribution for Adaptive Refinement of L-Shaped Plates Subiected to Bending)

  • 우광성;조준형;이승준
    • 한국전산구조공학회논문집
    • /
    • 제20권5호
    • /
    • pp.533-541
    • /
    • 2007
  • 계층적 p-세분화를 위해 Zienkiewicz-Zhu 오차평가법이 약간 수정되었으며, 이 방법의 유효성을 보이기 위해 휨을 받는 개구부를 갖는 Reinssner-Mindlin $C^{\circ}$-평판에 적용하였다. 유한요소해석상의 적응적 체눈을 결정하는 단계는 초수렴 팻취 복구기법에 기초를 둔 사후오차평가자와 연계된 p-세분화에 의해 제안되었다. 요소내의 변위장을 정의하기 위해 적분형 르장드르 고차 형상함수가 사용되는 반면 복구응력을 보간하기 위해 파스칼의 삼각수에 기초를 둔 같은 차수의 고차다항식이 사용되는 이유로 수정 Z/Z 오차평가는 종래의 방법과 다소 차이를 보여준다. 가우스 적분점에서의 응력을 최적화하기 위해 필요한 다항식으로 표현되는 응력함수를 얻기 위해 최소제곱법이 사용되었다. 고정된 요소망에 거의 최적의 형상함수 차수의 분배를 찾기 위한 전략이 논의되었는데, 허용되는 정확도를 얻을 수 있을 때까지 각 요소마다 형상함수의 차수를 불균등하게 증가시키는 방법으로, 소위 최적의 선택적 p-분배를 자동으로 결정하도록 되어있다. 위의 사항들을 L-형 평판 해석에 적용한 결과, 적응적 p-체눈설계 단계가 진행됨에 따라 자유도의 증가에 따라 오차량은 급격히 감소되는 것을 알 수 있었고, 제안된 오차 지시자에 의한 적응적 p-체눈 세분화는 최적 p-분배 진행방향에 근접하는 것을 볼 수 있었다.

2차원 균열판의 p-적응적 유한요소해석을 위한 정규크리깅 보간법의 적용 (Application of Ordinary Kriging Interpolation Method for p-Adaptive Finite Element Analysis of 2-D Cracked Plates)

  • 우광성;조준형;박미영
    • 한국전산구조공학회논문집
    • /
    • 제19권4호
    • /
    • pp.429-440
    • /
    • 2006
  • 이 연구의 목적은 두 가지로 대별할 수 있다. 첫째는, 베리오그램 모델링에 기초를 둔 정규크리깅 보간법의 p-적응적 유한요소법으로의 적용성이다. 둘째는, 수정된 초수렴 팻취복구 기법을 사용한 사후오차평가기와 연계된 계층적 p-체눈 세분화의 적응적 유한요소 과정을 제시하는 것이다. 가중치를 부여한 보간기법중의 하나인 정규크리깅 방법은 가우스 적분점에서의 응력데이타로 부터 소위 준정해를 얻는데 적용된다. 가중치를 동일하게 가정하는 종래의 보간기법과는 달리 실험적 및 이론적 베리오그램을 작성한 후 보간을 위한 가중치를 결정하게 된다. 한편, 적응적 p-체눈 세분화는 해석영역의 각 체눈에서 p-차수를 만족할만한 정확도를 얻을 수 있도록 프로그램내에서 자동으로 사후오차평가를 통해 불균등 또는 선택적으로 증가시킨다. 수정된 초수렴 팻취복구기법을 검증하기 위해 극한치를 사용한 새로운 오차평가기가 제안된다. 제안된 알고리즘의 정당성은 선형탄성파괴역학의 대표적 문제들인 중앙균열판, 일변균열 및 양변균열 해석을 통해 테스트되었다.