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ABSTRACT. We extend a p-hierarchical decomposition of the second degree finite element

space of Nédélec for tetrahedral meshes in three dimensions given in [1] to meshes with hexa-

hedral elements, and derive p-hierarchical decompositions of the second degree finite element

space of Raviart-Thomas in two dimensions for triangular and quadrilateral meshes. After

having proved stability of these subspace decompositions and requiring certain saturation as-

sumptions to hold, we construct a local a posteriori error estimator for fem and bem coupling

of a time-harmonic electromagnetic eddy current problem in R3 . We perform some numerical

tests to underline reliability and efficiency of the estimator and test its usefulness in an adaptive

refinement scheme.

1. INTRODUCTION

This paper is concerned with the construction of a reliable and efficient p-hierarchical based

local a posteriori error estimator for a fem-bem coupling of a time-harmonic electromagnetic

problem in R3.

The use of boundary elements for exterior problems in electromagnetics is not new, we

mention the early work of MacCamy & Stephan [2, 3, 4, 5] and Nédélec [6, 7]. The coupling

of fem and bem in electromagnetics has been pursued most notably by Bossavit [8], Costabel

& Stephan [9], Nédélec et al [10, 11, 12, 13] and Hiptmair [14, 15]. In this paper we will be

considering a field-based coupling formulation for an eddy current problem taken from [14].

The problem is discretized by edge elements inside the conductor and the exterior region is

taken into account by means of a suitable boundary integral coupling.

Given a conductor and a monochromatic exciting current, the task in eddy current compu-

tations is to compute the resulting magnetic and electric fields, in the conductor as well as in
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the exterior domain. To this end, let Ω ⊂ R3 be a bounded, simply connected open Lipschitz

polyhedron with boundary Γ = ∂Ω, and further set ΩE = R3 \ Ω̄. The domain Ω then rep-

resents the conductor with conductivity σ ∈ L∞(R3), σ1 ≥ σ(x) ≥ σ0 > 0 and magnetic

permeability μ ∈ L∞(R3), μ1 ≥ μ(x) ≥ μ0 > 0 with positive constants σ0, σ1, μ0, μ1. In the

exterior region ΩE , which represents air, we set σ ≡ 0 and by scaling μ ≡ 1. The elementwise

regularity of the material parameters reflects the fact that Ω can consist of different conducting

materials, i.e. the conductivity and permeability can jump from one material to another. We fur-

ther assume a source current J0 ∈ H(div,R3) with supp(J0) ⊂ Ω̄. It follows that J0 · n = 0
on Γ (there is no flow of J0 through Γ), where n denotes the unit normal vector field on Γ,

defined almost everywhere and pointing from Ω into ΩE .

A mathematical model of the resulting time-harmonic eddy current problem for low fre-

quencies (cf. Ammari, Buffa & Nédélec[16], MacCamy & Stephan[5]) consists of Maxwell’s

equations

curlE = −iωμH, curlH = σE+ J0 in R3, (1.1)

the Coulomb gauge divE = 0 in ΩE together with the transmission conditions

[E× n]Γ = 0, [H× n]Γ = 0, (1.2)

and the Silver-Müller radiation conditions

E(x) = O
(
1

|x|

)
, H(x) = O

(
1

|x|

)
uniformly for |x| → ∞. (1.3)

The equations in (1.1) are just the time-harmonic Maxwell equations with neglected displace-

ment currents (formally setting ωε = 0, where ε denotes the electric permittivity). This ap-

proximation is justified in view of low frequencies ω. Note that the second equation in (1.1)

reduces to curlH = 0 in the exterior domain ΩE . Therefore E cannot be uniquely determined

in ΩE and requires the Coulomb gauge condition. The transmission conditions (1.2) result

from requiring curlE and curlH to be in L2
loc(R

3).
It must be stated that in spite of the Coulomb gauge, E is unique only up to harmonic

Dirichlet vector fields in ΩE (cf. [16]). But H := 1
iωμ curlE (by (1.1)) remains unique, so

a scheme for determining the magnetic field, which is in fact the interesting quantity in most

applications, can consist in first computing a solution E and then deriving H from E. If in

addition we require
∫
ΓE · n = 0, then the solution E is unique.

In [14], Hiptmair derives an E-based coupling method for solving the problem (1.1)–(1.3)

which is based on Costabel’s symmetric coupling method [17] (see also [18]). It is this varia-

tional formulation that we will be working with. The unknowns of the coupled formulation in

this paper are u, the electrical field E in Ω, and λ, the twisted tangential trace of the magnetic

field on the transmission surface Γ. The natural Sobolev space for u is H(curl,Ω), the space

of L2-fields in Ω with rotation in L2(Ω), and the space for λ turns out to be a trace space of

H(curl,Ω). The discretization of u uses the lowest order H(curl,Ω)-conforming finite ele-

ment space of Nédélec [19]. We use the corresponding trace space for discretizing λ, which is

just a generalization of the lowest order finite element space of Raviart-Thomas on Γ. These
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spaces belong to the class of edge element spaces, as their degrees of freedom correspond to

edges of the grid.

Let (E,λ) be the solution of the continuous problem for of the above mentioned fem-bem

coupling formulations and let (Eh,λh) be the solution of the discrete problem. Then we are

interested in finding a reliable and efficient p-hierarchical error estimator for the Galerkin error

(E−Eh,λ−λh) in the energy norm. One of the main reasons such local a posteriori estimators

are so valuable is their usefulness in adaptive mesh refinement schemes. For a residual type

error estimator of the fem-bem coupling solution of (1.1)–(1.3) see [20].

Though hierarchical error estimators have long been in use for elliptic problems (cf. [21, 22]

for h-hierarchical estimation) and even for fem-bem coupling problems [23], the investigation

of their usefulness in electromagnetics has only begun recently. A p-hierarchical error estimator

for an eddy current problem in three dimensions using tetrahedral Nédélec elements can be

found in [1]. As usual, this estimator depends on a stable subspace decomposition of the higher

order finite element space and requires a saturation assumption. We extend the results of that

paper in two directions – first, we also consider hexahedral meshes, but more importantly we

now deal with coupling formulations, i.e. we have additional boundary element terms. Thus,

stable subspace decompositions of higher order Raviart-Thomas elements are needed as well.

We derive these from the decompositions of the Nédélec elements by virtue of the twisted

tangential trace mapping. In [24] we have applied the results of this paper to the fem-bem

coupling of a time-harmonic scattering problem. This work can also be seen as an extension

of [25, 26, 27, 28, 23], which deal with a posteriori error estimates for (non-electromagnetic)

coupling problems. Concerning electromagnetics, other recent articles dealing with a posteriori

error estimators for edge elements are [29, 30, 31, 32].

The paper is organized as follows: In Section 2 we present the coupling formulation for

the eddy current problem and in Section 3 we discuss the Galerkin method. Section 4 defines

the finite element space NDk(Th) of first kind Nédélec elements on a mesh Th in Ω and in-

vestigates RT k(Kh), the twisted tangential trace of NDk(Th), defined on the trace mesh Kh.

Starting from the decomposition of ND2(Th) for tetrahedra given in [1], we then construct

stable p-hierarchical decompositions of ND2(Th) for hexahedra and of RT 2(Kh) for trian-

gles and quadrilaterals in Section 5. In Section 6, we then apply the theory of the last section

to find a local a posteriori error estimator for an eddy current fem-bem coupling formulation.

Finally, the last section is devoted to numerically underlining the efficiency and reliability of a

simplified form of the error estimator for the eddy current problem. We also test its usefulness

in an adaptive mesh refinement scheme.

2. COUPLING FORMULATION

In this paper, we assume Ω to be a simply connected polyhedron. Let us then denote the

planar boundary faces by Γi, i = 1, . . . , NΓ such that ∂Ω = Γ =
⋃NΓ

i=1 Γi.

The complex duality pairings in Ω and on Γ will be denoted by (·, ·)Ω and 〈·, ·〉Γ. We use the

usual Sobolev spaces Hs(Ω) for scalar functions and Hs(Ω) for vector fields of order s ∈ R
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(cf. Grisvard [33]). Furthermore we use the spaces

H(curl,Ω) := {v ∈ L2(Ω) : curl v ∈ L2(Ω)},
H(div,Ω) := {v ∈ L2(Ω) : divv ∈ L2(Ω)},

and the spaces of distributional tangential fields H
−1/2
‖ (Γ) and H

−1/2
⊥ (Γ) as introduced in [34]

together with the trace spaces

H
−1/2
‖ (divΓ,Γ) := {ζ ∈ H

−1/2
‖ (Γ) : divΓ ζ ∈ H−1/2(Γ)},

H
−1/2
‖ (divΓ 0,Γ) := {ζ ∈ H

−1/2
‖ (divΓ,Γ) : divΓ ζ = 0, ζ ∈ H−1/2(Γ)},

H
−1/2
⊥ (curlΓ,Γ) := {ζ ∈ H

−1/2
⊥ (Γ) : curlΓ ζ ∈ H−1/2(Γ)},

with the surface divergence operator divΓ u := − curlΓ(u × n) and the surface curl operator

curlΓ u := curl u ·n, see also [34, 35, 14]. We furthermore need the vectorial surface rotation

for a scalar function φ defined by curlΓ φ := γ×t (gradφ).
In the coupling formulation we will need integral operators to represent the exterior problem

in (1.1)–(1.3). These operators are defined for x ∈ Γ as follows (for their properties see e.g.

[14]).

V(λ)(x) := γDV(λ)(x) = γD

∫
Γ
Φ(x,y)λ(y) ds(y),

K(λ)(x) := γDK(λ)(x) = γD curlx

∫
Γ
Φ(x,y)(n× λ)(y) ds(y),

K̃(λ)(x) := γNV(λ)(x) = (γ×t )K(λ× n)(x) = γN

∫
Γ
Φ(x,y)λ(y) ds(y),

W(λ)(x) := γNK(λ)(x) = (γ×t )W(λ)(x) = γN curlx

∫
Γ
Φ(x,y)(n× λ)(y) ds(y)

with Laplace kernel Φ(x,y) = 1
4π|x−y| and the limits γD and γN from ΩE onto Γ of the traces

γDu := n× (u× n) =: uΓ and γNu := γ×t (curl u), where γ×t u := u× n. Furthermore we

need γnu := u · n.

After having collected the operators and spaces needed we formulate the coupled variational

problem for the eddy current problem as ([14] and [18]):

Find u ∈ H(curl,Ω), λ ∈ H
−1/2
‖ (divΓ 0,Γ) such that

(μ−1 curl u, curl v)Ω + iω(σu,v)Ω − 〈WuΓ,vΓ〉Γ + 〈K̃λ,vΓ〉Γ = −iω(J0,v)Ω,

〈(I − K)uΓ, ζ〉Γ + 〈Vλ, ζ〉Γ = 0
(2.1)

for all v ∈ H(curl,Ω), ζ ∈ H
−1/2
‖ (divΓ 0,Γ).

For brevity we write (2.1) as

A(u,λ;v, ζ) = L(v, ζ).
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The above formulation is obtained by using Green’s formula in Ω and a Stratton-Chu represen-

tation formula for E in ΩE . The unknown u corresponds to E|Ω, and the unknown λ on the

boundary corresponds to γNE = −iωH|ΩE
×n, which can indeed be seen to be surface diver-

gence free. Due to the transmission conditions there holds λ = γNu. Note that the formulation

(2.1) is block skew-symmetric. As observed by Hiptmair [14], the sesquilinear form A is con-

tinuous and elliptic on (H(curl,Ω) ×H
−1/2
‖ (divΓ 0,Γ))

2. Thus, the variational formulation

(2.1) admits a unique solution. Setting E|Ω := u, E|ΩE
:= curlV(n × γDE) −V(λ) with

the single layer potential V with Laplace kernel and H := 1
iωμ curlE gives a solution to the

original problem (1.1)–(1.3) (in which the quantity H is unique, as mentioned earlier).

3. THE GALERKIN METHOD

Let Th be a regular triangulation (with tetrahedral or hexahedral elements) of Ω and Kh =
{T ∩ Γ : T ∈ Th} the induced triangulation on Γ. For the Galerkin method we use the

finite element spaces suggested in [14] , namely the well known H(curl,Ω)-conforming finite

element space ND1(Th) of first kind Nédélec elements of first order [19] for discretization

of the unknown u ∈ H(curl,Ω) and RT 0
1(Kh) := {λh ∈ RT 1(Kh), divΓλh = 0} for

the boundary unknown λ ∈ H
−1/2
‖ (divΓ 0,Γ), where RT 1(Kh) denotes the lowest order

H
−1/2
‖ (divΓ,Γ)-conforming finite element space of Raviart-Thomas, which can be obtained

as the image of ND1(Th) under the mapping γ×t . Thus the Galerkin method reads:

Find uh ∈ ND1(Th), λh ∈ RT 0
1(Kh) such that

(μ−1 curl uh, curl vh)Ω + iω(σuh,vh)Ω

−〈WγDuh, γDvh〉Γ + 〈K̃λh, γDvh〉Γ = −iω(J0,vh)Ω,

〈(I −K)γDuh, ζh〉Γ + 〈Vλh, ζh〉Γ = 0

(3.1)

for all vh ∈ ND1(Th), ζh ∈ RT 0
1(Kh).

Now the conformity of the discrete spaces and the strong ellipticity of A(·, ·) imply that the

Galerkin formulation (3.1) has a unique solution (uh,λh) ∈ ND1(Th)×RT 0
1(Kh).

Next, we give an equivalent formulation of the above Galerkin method which is useful for

the numerical implementation of the scheme. As Γ is simply connected, we haveRT 0
1(Kh) =

curlΓS1(Kh), where S1(Kh) denotes the finite element space of scalar, continuous and piece-

wise linear functions [36]. Instead of seeking λh ∈ RT 0
1(Kh), we now seek a function ϕh ∈

S̃1(Kh) := {ψ ∈ S1(Kh),
∫
Γ ψ ds(x) = 0} (and set λh := curlΓϕh). We achieve this for a

ϕh ∈ S1(Kh) by adding the equation P(ϕh, τh) := (
∫
Γ ϕh(x) ds(x))(

∫
Γ τh(x) ds(x)) = 0 for

all τh ∈ S1(Kh) to our linear system. Note that the sesquilinear form P(ϕ, τ) is positive semi-

definite (P(ϕ,ϕ) = |
∫
Γ ϕ(x) ds(x)|2), and that the corresponding matrix has rank 1. Thus the
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alternative Galerkin method reads: Find uh ∈ ND1(Th), ϕh ∈ S1(Kh) such that

(μ−1 curl uh, curl vh)Ω + iω(σuh,vh)Ω

−〈WγDuh, γDvh〉Γ + 〈K̃ curlΓϕh, γDvh〉Γ = −iω(J0,vh)Ω,

〈(I −K)γDuh, curlΓτh〉Γ + 〈V curlΓϕh, curlΓτh〉Γ + P(ϕh, τh) = 0

(3.2)

for all vh ∈ ND1(Th), τh ∈ S1(Kh).

Now, again, the conformity of the discrete spaces and the strong ellipticity of A(·, ·) imply

that the Galerkin formulation (3.2) has a unique solution (uh,λh) ∈ ND1(Th)×curlΓS1(Kh).

4. FINITE ELEMENT SPACES

We consider meshes with tetrahedral elements and with parallelepiped elements (which we

will just call hexahedral elements) in R3, and we simply name them tetrahedral or hexahe-
dral meshes. Analogously, we speak of triangular and quadrilateral meshes in R2, although

quadrilateral elements are understood to be parallelograms.

In [19], Nédélec defines a family of conforming finite elements for H(curl,Ω). For any

element T of the regular tetrahedral mesh Th define the local finite element space

NDk(T ) := (Pk−1(T ))
3 + {p ∈ (Pk(T ))

3 : pT · x = 0} ⊂ (Pk(T ))
3,

inducing the global finite element space

NDk(Th) :=
{
ηh ∈ H(curl,Ω); ηh|T ∈ NDk(T ) ∀T ∈ Th

}
.

Pk(T ) denotes the space of polynomials of order k (a monomial is of order k on a tetrahedron

when the sum of the exponents equals k). The local degrees of freedom are given by

(1)
∫
e
u · t q ds ∀q ∈ Pk−1, e edge of T ,

(2)
∫
F

(u× n) · q dS; ∀q ∈ (Pk−2)
2, F face of T ,

(3)
∫
T

u · q dx ∀q ∈ (Pk−3)
3.

This choice of degrees of freedom ensures tangential continuity and thus H(curl,Ω)-conformity

[19]. If an element T is the image of another element T̂ under the affine transformation

x = �(x̂) := Bx̂+ d, B ∈ L(T̂ ,R3), d ∈ R3 (4.1)

and {b̂j , j = 1, . . . , nk} is a basis of NDk(T̂ ), then a local basis on T is given by

bj(x) = (BT)−1 b̂j(x̂), j = 1, . . . , nk. (4.2)

Global form functions are obtained by glueing together the local basis functions belonging to

a common edge or face.
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FIGURE 1. Numbering of the edges and faces on the unit cube [−1, 1]3.

The construction of Nédélec finite elements on hexahedral meshes is very similar. Let Th be

a regular hexahedral mesh on Ω. Define the local space

NDk(T ) = Qk−1,k,k(T )×Qk,k−1,k(T )×Qk,k,k−1(T ) ⊂ (Qk,k,k(T ))
3.

Here Qk,l,m(T ) denotes the space of polynomials with maximum degree k in x, l in y and m
in z. Then define the global finite element space NDk(Th) as before. The degrees of freedom

are now given by

(1)
∫
e
u · t q ds ∀q ∈ Qk−1, e edge of T ,

(2)
∫
F

(u× n) · q dS ∀q ∈ Qk−2,k−1 ×Qk−1,k−2, F face of T ,

(3)
∫̂
T

u · q dx ∀q ∈ Qk−1,k−2,k−2 ×Qk−2,k−1,k−2 ×Qk−2,k−2,k−1.

For the lowest order p = 1 we get the following basis functions associated to the edges of

the reference element, see Figure 1.

b(e0) =
1

8
(1− y)(1− z)ex, b(e1) =

1

8
(1 + y)(1− z)ex, b(e2) =

1

8
(1− y)(1 + z)ex,

b(e3) =
1

8
(1 + y)(1 + z)ex, b(e4) =

1

8
(1− x)(1− z)ey, b(e5) =

1

8
(1 + x)(1− z)ey,

b(e6) =
1

8
(1− x)(1 + z)ey, b(e7) =

1

8
(1 + x)(1 + z)ey, b(e8) =

1

8
(1− x)(1− y)ez,

b(e9) =
1

8
(1 + x)(1− y)ez, b(e10)=

1

8
(1− x)(1 + y)ez, b(e11) =

1

8
(1 + x)(1 + y)ez.

We remark that the edge functions are constant on the edge which they are associated to.

Here are some examples of the 54 basis functions for the polynomial degree p = 2.
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• There are two edge functions associated to the edge e0 (y = −1, z = −1).

b
(e0)
1 :=

1

32
(3y + 1)(y − 1)(3z + 1)(z − 1)ex,

b
(e0)
2 :=

3

32
x(3y + 1)(y − 1)(3z + 1)(z − 1)ex.

The function b
(e0)
1 is constant on the edge e0 with the value 1

2 . Furthermore, the tan-

gential component vanishes everywhere except on the two faces which are adjacent to

the edge.

• There are four face functions associated to the face F0 (z = −1), two in each direction.

b
(F0)
1 :=

3

32
(1− y2)(3z + 1)(z − 1)ex, b

(F0)
2 :=

9

32
x (1− y2)(3z + 1)(z − 1)ex,

b
(F0)
3 :=− 3

32
(1− x2)(3z + 1)(z − 1)ey, b

(F0)
4 :=− 9

32
y (1− x2)(3z + 1)(z − 1)ey.

The tangential component of the face function is only non-zero on its associated face.

• There are six interior functions

b
(T )
1 :=

9

32
(1− y2)(1− z2)ex, b

(T )
2 :=

27

32
x (1− y2)(1− z2)ex,

b
(T )
3 :=

9

32
(1− x2)(1− z2)ey, b

(T )
4 :=

27

32
y (1− x2)(1− z2)ey,

b
(T )
5 :=

9

32
(1− x2)(1− y2)ez, b

(T )
6 :=

27

32
z (1− x2)(1− y2)ez.

The interior functions are zero on four faces and have a vanishing normal component

on the other two faces.

NDk is still invariant under the affine transformation (4.1) if we transform the basis func-

tions using (4.2), and we obtain the global basis functions by glueing together the local basis

functions as before.

For both mesh types, define ΠNDk(T )u ∈ NDk(T ) as the unique interpolate of u ∈
(C∞(T ))3 such that α(u − ΠNDk(T )u) = 0 for all degrees of freedom α. We then have

the approximation property [19, Theorem 2]:

Lemma 4.1. For u ∈ Hk+1(T ) ⊂ H(curl, T ) (k ∈ N0) and an element T (tetrahedral or
hexahedral) with diameter hT there holds

‖u−ΠNDk(T )u‖H(curl,T ) ≤ chkT ‖u‖Hk+1(T )

with a constant c dependent only on k and the regularity of the element T .

We now turn our attention to the discretization of the trace space H
−1/2
‖ (divΓ,Γ). We

assume Ω to be a polyhedron, so that Γ is piecewise plane. According to [34, 35], we know

that the space H
−1/2
‖ (divΓ,Γ) is just the twisted tangential trace of H(curl,Ω). It is thus

obvious to discretize H
−1/2
‖ (divΓ,Γ) using the twisted tangential trace of the space of Nédélec
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elements. It is well known [37] that this yields the two dimensional H(div,Ω)-conforming

space of Raviart-Thomas, i.e.

γ×t : NDk(Th)→ RT k(Kh). (4.3)

Also, the degrees of freedom carry over [37], i.e. for an element T ∈ Th, a face K of T and

u ∈ (C∞(T ))3 we have the identity

γ×t Π
NDk(T )u = ΠRT k(K)γ×t u. (4.4)

A definition of the Raviart-Thomas spaceRT k can be found in [38, 19], but we will be content

to define RT k(Kh) by the above characterization (4.3). The next lemma derives the quality

of the approximation of H
−1/2
‖ (divΓ,Γ) by RT k from the approximation property of NDk

given in Lemma 4.1.

Lemma 4.2. For λ ∈ Hk+1/2(K) ⊂ H
−1/2
‖ (divΓ,K) (k ∈ N0) and K face of the element T

with diameter h there holds

‖λ−ΠRT k(K)λ‖
H

−1/2
‖ (divΓ,K)

≤ chk‖λ‖Hk+1/2(K)

with a constant c dependent only on k and the regularity of the element T .

Proof. The constant c appearing in this proof is always to be regarded as a generic constant.

Let u ∈ Hk+1(T ) ⊂ H(curl, T )with (u×n)|K = λ. Continuity of γ×t , (4.4) and Lemma 4.1

yield

‖λ−ΠRT k(K)λ‖
H

−1/2
‖ (divΓ,K)

≤ c‖u−ΠNDk(T )u‖H(curl,T ) ≤ chk‖u‖Hk+1(T ). (4.5)

Defining the Hk+1/2-norm on K by

‖φ‖Hk+1/2(K) = inf
Φ∈Hk+1(T ),Φ|K=φ

‖Φ‖Hk+1(T ),

we obtain

‖n× λ‖Hk+1/2(K) = inf
u∈Hk+1(T )

u|K=λ×n

‖u‖Hk+1(T ).

Because of λ ·n = 0, every u with u|K = λ×n satisfies (u×n)|K = λ, so that (4.5) leads to

‖λ−ΠRT k(K)λ‖
H

−1/2
‖ (divΓ,K)

≤ chk‖n× λ‖Hk+1/2(K) ≤ chk‖λ‖Hk+1/2(K).

�
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5. TWO-LEVEL DECOMPOSITIONS AND p-HIERARCHICAL ERROR ESTIMATORS

We seek stable two-level decompositions of the finite element spaces introduced in the last

section for ultimately constructing hierarchical error estimators.

In [1], the authors consider a p-hierarchical two-level decomposition of ND2(Th) for tetra-

hedral grids and describe the construction of a hierarchical error estimator. Here, we will extend

this result to hexahedral grids and then use the trace mapping (4.3) to derive H
−1/2
‖ (divΓ,Γ)-

stable decompositions ofRT 2(Kh), again producing hierarchical error estimators.

Here and in the rest of the paper, the symbol � signifies “≤ up to a multiplicative constant”.

Such constants are always assumed to be independent of the mesh width h (if present in the

context). The symbol � means “� and �”.

5.1. Decomposition of ND2(Th). Let Th be a regular grid on Ω with mesh width h, and

denote with M the number of edges, with N the number of faces and with L the number

of elements. Further, let Sk denote the finite element space of scalar, continuous and piece-

wise polynomial functions of order k, and let S̃k := Sk \ Sk−1 (the hierarchical surplus).

The dimension of Sk(T ) is dimSk(T ) = 1
6(k + 1)(k + 2)(k + 3) for a tetrahedron T and

dimSk(T ) = (k + 1)3 for a hexahedron T .

For tetrahedral grids, the decomposition given in [29, 1] reads

ND2(Th) = ND1(Th)⊕ grad S̃2(Th)⊕ ÑD
⊥
2 (Th) (5.1)

where

ÑD⊥
2 (Th) := {uh ∈ ND2(Th) :

∫
e
uh · tq ds = 0, ∀q ∈ P1, e edge of Th},

i. e. ÑD⊥
2 (Th) is spanned by face functions only.

Counting degrees of freedom on element T , one sees that (5.1) is a direct sum: the dimension of

ND1(T ) equals the number of edges, i.e. six, and the dimension of S̃2(T ) is 10−4 = 6 (again

equal to the number of edges). We write grad S̃2(Th) = span{gradφ(e1), . . . ,gradφ(eM )}.
The space ND2(T ) has dimension 20, corresponding to two basis functions per edge and two

per face of T . The basis functions on the faces span the space ÑD⊥
2 (T ), which thus has

dimension eight. Accordingly, for a tetrahedral mesh we write

ÑD⊥
2 (Th) = span{b(F1)

1 ,b
(F1)
2 , . . . ,b

(FN )
1 ,b

(FN )
2 }

for the space spanned by the face-orientated basis functions of ND2(Th). The decomposition

(5.1) can then be written as:

ND2(Th) = ND1(Th)⊕
M∑
i=1

span{gradφ(ei)} ⊕
N∑
j=1

span{b(Fj)
1 ,b

(Fj)
2 }. (5.2)

This construction cannot be extended offhand to the hexahedral case, for the decomposition

defined in (5.1) is then no longer a direct sum. Counting degrees of freedom, we see that
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grad S̃2(T ) and ÑD⊥
2 (T ) overlap: the dimension of ND1(T ) equals the number of edges,

i.e. 12, the dimension of S̃2(T ) is equal to 27 − 8 = 19 (corresponding to one function per

edge, one per face and one inner function), and the dimension of ÑD⊥
2 (T ) is 30 (four functions

per face and six inner functions). But the dimension of ND2(T ) is 54, so that there must hold

dim(grad S̃2(T )∩ÑD
⊥
2 (T )) = 7. Hence, if we are to find a direct decomposition ofND2(T )

for hexahedra, we must determine 7 functions to eliminate from grad S̃2(T ) ∩ ÑD
⊥
2 (T ). Let

us write

S̃2(T ) = span{φ(e0), . . . , φ(e11), φ(F0), . . . , φ(F5), φ(T )}
with edge based functions φ(ei), face based functions φ(Fi) and bubble function φ(T ). Further-

more with face based functions b
(Fj)
i and suitable ’bubble’ functions b

(T )
i we can write

ÑD⊥
2 (T ) = span{b(F0)

1 , . . . ,b
(F0)
4 , . . . ,b

(F5)
1 , . . . ,b

(F5)
4 ,b

(T )
1 , . . . ,b

(T )
6 }.

By explicitly computing the basis functions of ÑD⊥
2 (T ) for the reference element T = [−1, 1]3

(according to the degrees of freedom given earlier), one ascertains that the face functions of

grad S̃2(T ) can be described by functions of ÑD⊥
2 (T ), for example there holds

gradφ(F0) = grad(1− x2)(1− y2)(1− z) = −32
9
(b

(F0)
2 − b

(F0)
4 + b

(T )
2 + b

(T )
4 + b

(T )
5 ),

and similarly for the other gradφ(Fj). There further holds

gradφ(T ) = grad(1− x2)(1− y2)(1− z2) = −64
27
(b

(T )
2 + b

(T )
4 + b

(T )
6 ).

With this information, there are now many ways to exchange the spaces grad S̃2(T ) and

ÑD⊥
2 (T ) by reduced spaces grad S̃−

2 (T ) and ÑD⊥,−
2 (T ) to obtain a direct sum. We pro-

pose:

(1) leave S̃2(T ) as it is,

(2) substitute b
(Fj)
2 + b

(Fj)
4 for the face functions b

(Fj)
2 , b

(Fj)
4 (j = 0, . . . , 5) and further

substitute b
(T )
2 −b

(T )
4 and b

(T )
4 −b

(T )
6 for the interior functions b

(T )
2 , b

(T )
4 , b

(T )
6 ; this

changes ÑD⊥
2 (T ) to ÑD⊥,−

2 (T ).

We then obtain the global space

ÑD⊥,−
2 (Th) := span{b(Fj)

1 ,b
(Fj)
3 ,b

(Fj)
2 + b

(Fj)
4 ,

b
(Tk)
1 ,b

(Tk)
3 ,b

(Tk)
5 ,b

(Tk)
2 − b

(Tk)
4 ,b

(Tk)
4 − b

(Tk)
6 ,

j = 1, . . . , N, k = 1, . . . , L}
and the direct decomposition

ND2(Th) = ND1(Th)⊕ grad S̃2(Th)⊕ ÑD
⊥,−
2 (Th)
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for hexahedral grids, which can be broken down to:

ND2(Th) = ND1(Th)⊕
M∑
i=1

span{gradφ(ei)}

⊕
N∑
j=1

(
span{gradφ(Fj)} ⊕ span{b(Fj)

1 ,b
(Fj)
3 ,b

(Fj)
2 + b

(Fj)
4 }

)

⊕
L∑

k=1

(
span{gradφ(Tk)} ⊕ span{b(Tk)

1 ,b
(Tk)
3 ,b

(Tk)
5 ,b

(Tk)
2 − b

(Tk)
4 ,b

(Tk)
4 − b

(Tk)
6 }

)
.

(5.3)

In what follows the stability of the decompositions (5.2) and (5.3) is crucial for the derivation

of hierarchical error indicators. To this aim, we define for tetrahedra the subspace projections

P1 : ND2(Th)→ ND1(Th),
P (F ) : ND2(Th)→ span{b(F )

1 ,b
(F )
2 },

R(e) : ND2(Th)→ span{gradφ(e)},
and for hexahedra the projections

P̃1 : ND2(Th)→ ND1(Th),
P̃ (F ) : ND2(Th)→ span{b(F )

1 ,b
(F )
3 ,b

(F )
2 + b

(F )
4 },

P̃ (T ) : ND2(Th)→ span{b(Tk)
1 ,b

(Tk)
3 ,b

(Tk)
5 ,b

(Tk)
2 − b

(Tk)
4 ,b

(Tk)
4 − b

(Tk)
6 },

R̃(e) : ND2(Th)→ span{gradφ(e)},
R̃(F ) : ND2(Th)→ span{gradφ(F )},
R̃(T ) : ND2(Th)→ span{gradφ(T )},

so that for u2 ∈ ND2(Th) the decompositions (5.2) and (5.3) can be written as

u2 = P1u2 +

M∑
i=1

R(ei)u2 +

N∑
j=1

P (Fj)u2 (5.4)

and

u2 = P̃1u2 +

M∑
i=1

R̃(ei)u2 +

N∑
j=1

(
R̃(Fj)u2 + P̃ (Fj)u2

)
+

L∑
k=1

(
R̃(Tk)u2 + P̃ (Tk)u2

)
. (5.5)

The following lemma is standard (see [39] for details). It is used in the proof of Lemma 5.2

which postulates the stability of the decompositions.

Lemma 5.1. Let T ∈ Th be an element with diameter hT and T̂ be the reference element. Let
q̂ : T̂ → R3, q : T → R3.
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(1) Then with the H(curl)-conforming transformation (cf. (4.1) and (4.2))

q(x) = (BT)−1 q̂(�−1(x)) (5.6)

there holds
‖q‖L2(T ) ∼ h1/2‖q̂‖

L2(̂T )
, (5.7)

(2) Then with the H(div)-conforming transformation

q(x) =
1

detB
B q̂(�−1(x)) (5.8)

there holds
‖q‖L2(T ) ∼ h−1/2‖q̂‖

L2(̂T )
, (5.9)

The next lemma states the stability result. For the sake of clarity, we will denote the

H(curl,Ω)-norm simply by ‖ ‖.

Lemma 5.2. The decompositions (5.2) resp. (5.3) are stable with respect to the H(curl,Ω)-
norm, i.e. for all u2 ∈ ND2(Th) there holds

‖u2‖2 � ‖P1u2‖2 +
M∑
i=1

‖R(ei)u2‖2 +
N∑
j=1

‖P (Fj)u2‖2 (5.10)

resp.

‖u2‖2 � ‖P̃1u2‖2 +
M∑
i=1

‖R̃(ei)u2‖2 +
N∑
j=1

(
‖R̃(Fj)u2‖2 + ‖P̃ (Fj)u2‖2

)

+

L∑
k=1

(
‖R̃(Tk)u2‖2 + ‖P̃ (Tk)u2‖2

)
.

(5.11)

Proof. First let us consider the case of hexahedra, i.e. (5.11). First we observe that due to the

uniqueness of the decomposition (5.3) the mapping |||·||| is a norm where |||·||| is defined by

|||u2|||2L2(Ω) :=‖P̃1u2‖2L2(Ω) +
M∑
i=1

‖R̃(ei)u2‖2L2(Ω) +
N∑
j=1

(
‖R̃(Fj)u2‖2L2(Ω) + ‖P̃ (Fj)u2‖2L2(Ω)

)

+

L∑
k=1

(
‖R̃(Tk)u2‖2L2(Ω) + ‖P̃ (Tk)u2‖2L2(Ω)

)
=:

∑
T∈Th

∑
PT

‖PTu2‖2L2(T )

Since the L2-Norm is local we conclude with (5.7) that there holds

|||u2|||2L2(Ω) =
∑
T∈Th

|||u2|||2L2(T ) =
∑
T∈Th

∑
PT

‖PTu2‖2L2(T ) ∼
∑
T∈Th

hT
∑
PT

‖P̂T û2‖2L2(̂T )
, (5.12)
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where v̂(x̂) = BTv(x) is the transformation of v to the reference element T̂ , and PT denotes

a projection operator that is related to the element T . The constant in the equivalence relation

depends only on the shape regularity of the mesh. Furthermore there holds for û2 ∈ ND2(T̂ )

|||û2|||L2(̂T )
=

∑
PT̂

‖PT̂ û2‖L2(̂T )
∼ ‖û2‖L2(̂T )

,

since all norms are equivalent on a finite dimensional space and the number of projection

operators on an element is bounded. Here the constant in the equivalence relation depends

only on the decomposition on T̂ . With (5.12) and (5.7) we obtain

|||u2|||2L2(Ω) ∼
∑
T∈Th

hT ‖û2‖2L2(̂T )
∼

∑
T∈Th

‖u2‖2L2(T ) = ‖u2‖2L2(Ω).

Now it is left to show that there holds

|||curl u2|||L2(Ω) :=
∑
P

‖curlPu2‖2L2(Ω) ∼ ‖curl u2‖L2(Ω).

This follows with the same arguments as above, when we use relation (5.9) for the transforma-

tion to the reference element since curl u2 ∈ RT 2(Th) for u2 ∈ ND2(Th). Note that also the

following decomposition is unique:

curl u2 = curl P̃1u2 +

M∑
i=1

curl R̃(ei)u2 +

N∑
j=1

(
curl R̃(Fj)u2 + curl P̃ (Fj)u2

)

+

L∑
k=1

(
curl R̃(Tk)u2 + curl P̃ (Tk)u2

)
.

This can be seen as follows.

Let curl u2 = 0. Then we have curl P̃1u2 = curlΠND1u2 = ΠRT 1 curl u2 = 0, fur-

thermore there holds curl R̃(ei)u2 = curl R̃(Fj)u2 = curl R̃(Tk)u2 = 0 due to curl grad ≡
0. The decomposition (5.5) yields curl

(∑N
j=1 P̃

(Fj)u2 +
∑L

k=1 P̃
(Tk)u2

)
= 0. Therefore

there exists ψ2 ∈ S̃2(Th)with
∑N

j=1 P̃
(Fj)u2+

∑L
k=1 P̃

(Tk)u2 = gradψ2. Now gradψ2 = 0

since the sum (5.3) is direct, hence P̃ (Fj)u2 = 0 for all j and P̃ (Tk)u2 = 0 for all k. Especially

there holds curl P̃ (Fj)u2 = 0 for all j and curl P̃ (Tk)u2 = 0 for all k. Thus curl u2 = 0
implies curlPu2 = 0 for all projections P . Altogether there holds, independently of the

meshsize h,

|||u2|||L2(Ω) ∼ ‖u2‖L2(Ω), |||curl u2|||L2(Ω) ∼ ‖curl u2‖L2(Ω).

This gives the assertion of the lemma in case of a hexahedral mesh for the H(curl,Ω)-norm

and the equivalent energy norm.

Similar arguments apply to the case of tetrahedral grids (see [1, Lemma 3 and Lemma 4]).

�
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Now let

a(u,v) := (α curl u, curl v)Ω + (βu,v)Ω (5.13)

(α, β ∈ C \ {0}, α
β /∈ R<0) be such that a(·, ·) is continuous on (H(curl,Ω))2 and satisfies

there a Gårdings inequality. Then define

‖v‖E := ‖v‖E(Ω) := |a(v,v)|1/2,

the energy norm induced by a, equivalent to the H(curl,Ω)-norm. Thus the stability proven

above holds for the energy norm as well. We now arrive at the construction of a hierarchical

error estimator for the Galerkin method to the variational problem

Find u ∈ H(curl,Ω) such that

a(u,v) = f(v) (5.14)

for all v ∈ H(curl,Ω) for a given right hand side f ∈ H(curl,Ω)′.

Denote with uh and u2 the solutions of the Galerkin formulations in ND1(Th) resp. in

ND2(Th). A crucial requirement now needed is the saturation assumption: There exists a

sequence (δh)h with δh ≤ δ < 1 such that

‖u− u2‖E ≤ δh‖u− uh‖E. (5.15)

One infers that the error ‖u− uh‖ is equivalent to ‖u2 − uh‖:

Lemma 5.3. If the saturation assumption (5.15) holds, one has

‖e2‖E ≤ ‖u− uh‖E ≤
1

1− δ
‖e2‖E

with the error term e2 := u2 − uh.

Proof. See [1, Lemma 1] or [21, Equation (4.13)]. �

One thus seeks an estimate of ‖e2‖E, preferably of local type. Note that e2 = u2 − uh

satisfies the defect equation

a(e2,η) = r(η) := f(η)− a(uh,η) ∀η ∈ ND2(Th). (5.16)

Now let ã be the decoupled sesquilinear form defined on ND2(Th) × ND2(Th) through the

sesquilinear form a and the decompositions (5.4) resp. (5.5), i.e.

ã(u2,v2) := a(P1u2, P1v2) +
M∑
i=1

a(R(ei)u2, R
(ei)v2) +

N∑
j=1

a(P (Fj)u2, P
(Fj)v2) (5.17)
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for tetrahedra and

ã(u2,v2) :=a(P̃1u2, P̃1v2) +

M∑
i=1

a(R̃(ei)u2, R̃
(ei)v2)

+
N∑
j=1

(
a(R̃(Fj)u2, R̃

(Fj)v2) + a(P̃ (Fj)u2, P̃
(Fj)v2)

)

+

L∑
k=1

(
a(R̃(Tk)u2, R̃

(Tk)v2) + a(P̃ (Tk)u2, P̃
(Tk)v2)

)
(5.18)

for hexahedra. Lemma 5.2 states that ã is equivalent to a, i.e. there holds ã(u2,u2) �
a(u2,u2). Hence, ã is continuous on (H(curl,Ω))2 and satisfies there a Gårdings inequal-

ity. Now define the error term ẽ2 ∈ ND2(Th) by

ã(ẽ2,η) = a(e2,η) = r(η) := f(η)− a(uh,η) ∀η ∈ ND2(Th). (5.19)

We expect ẽ2 to be a good approximation of e2 ∈ ND2(Th), and indeed there holds

Lemma 5.4. For ẽ2 defined by (5.19) there holds

‖ẽ2‖E � ‖e2‖E.
Proof. See [1, Lemma 2]. �

Now let P be a projection operator from (5.4) resp. (5.5) and let VP ⊂ ND2(Th) be the

corresponding subspace. Because of the decoupling character of the sesquilinear form ã, the

defect equation (5.19) can be solved locally, yielding the defect equations

a(P ẽ2,η) = r(η) := f(η)− a(uh,η) ∀η ∈ VP ⊂ ND2(Th). (5.20)

In particular, for VP = ND1(Th) there holds the localized equation

a(P1ẽ2,η) = f(η)− a(uh,η) = 0 ∀η ∈ ND1(Th).

Thus P1ẽ2 = 0, so that ẽ2 actually lies in the hierarchical surplus ÑD2(Th) := (Id −
ΠND1)ND2(Th). Regarding the other subspaces for the tetrahedral case, (5.20) yields the

one-dimensional problems

For i = 1, . . . ,M find ψ(ei) ∈ span{φ(ei)} such that

(β gradψ(ei),gradφ(ei))Ω = r(gradφ(ei)) (5.21)

and the two-dimensional problems

For j = 1, . . . , N find Ψ(Fj) ∈ span{b(Fj)
1 ,b

(Fj)
2 } such that

a(Ψ(Fj),b⊥
2 ) = r(b⊥

2 ) ∀b⊥
2 ∈ span{b

(Fj)
1 ,b

(Fj)
2 }. (5.22)
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There holds gradψ(e) = R(e)ẽ2 and Ψ(F ) = P (F )ẽ2. We now define

Θ(e) := ‖gradψ(e)‖E,
Θ(F ) := ‖Ψ(F )‖E

and obtain by virtue of the stability result (5.10):

Proposition 5.5 (Theorem 1 of [1]). If the saturation assumption (5.15) is satisfied, then on a
tetrahedral grid there holds

η � ‖u− uh‖E � 1

1− δ
η

with the local a posteriori error estimator

η2 :=

M∑
i=1

(
Θ(ei)

)2
+

N∑
j=1

(
Θ(Fj)

)2
.

Proof. The assertion follows from Lemmas 5.3 and 5.4. It is η = ‖ẽ2‖E. �

Now let the edges of a tetrahedral element T be numbered by the indices i = 0, . . . , 5, and

let the sides be numbered by j = 0, . . . , 3. Then the local contribution on T is given by

η2T =

5∑
i=0

1

ki

(
Θ(ei)

)2
+
1

2

3∑
j=0

(
Θ(Fj)

)2
,

where ki denotes the number of elements sharing the edge with index i. An adaptive mesh

refining algorithm would now consist of computing the local error estimators ηT for every

element T of Th. The element is refined if this value exceeds a certain limit (usually depending

on the mean value or the maximum of the ηT ’s, according to the chosen strategy). Of course

additional refinement must be performed to maintain mesh regularity.

One last simplification arises from the fact that the defect problem for gradφ(ei) is one-

dimensional: Simple computations yield

Θ(e) =
|f(gradφ(e))− a(uh,gradφ(e))|

‖gradφ(e)‖E
.

For the two-dimensional problems we can write

Θ(F ) = ‖Ψ(F )‖E = ‖κ1b(F )
1 + κ2b

(F )
2 ‖E,

where (κ1, κ2)
T are solutions to the LSE(

a(b
(F )
1 ,b

(F )
1 ) a(b

(F )
2 ,b

(F )
1 )

a(b
(F )
1 ,b

(F )
2 ) a(b

(F )
2 ,b

(F )
2 )

)(
κ1
κ2

)
=

(
f(b

(F )
1 )− a(uh,b

(F )
1 )

f(b
(F )
2 )− a(uh,b

(F )
2 )

)
.

For hexahedra this procedure yields the following theorem; the various Θ’s are defined there-

after.
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Proposition 5.6. If the saturation assumption (5.15) is satisfied, then on a hexahedral grid
there holds

η � ‖u− uh‖E � 1

1− δ
η

with the local a posteriori error estimator

η2 :=
M∑
i=1

(
Θ(ei)

)2
+

N∑
j=1

((
Θ

(Fj)
1

)2
+

(
Θ

(Fj)
2

)2
)
+

L∑
k=1

((
Θ

(Tk)
1

)2
+

(
Θ

(Tk)
2

)2
)
.

The local contributions on an element T are

η2T :=
1

4

11∑
i=0

(
Θ(ei)

)2
+
1

2

5∑
j=0

((
Θ

(Fj)
1

)2
+

(
Θ

(Fj)
2

)2
)
+

(
Θ

(T )
1

)2
+

(
Θ

(T )
2

)2
.

We have

Θ(e) :=
|f(gradφ(e))− a(uh,gradφ(e))|

‖gradφ(e)‖E
,

Θ
(F )
1 :=

|f(gradφ(F ))− a(uh,gradφ(F ))|
‖gradφ(F )‖E

,

Θ
(T )
1 :=

|f(gradφ(T ))− a(uh,gradφ(T ))|
‖gradφ(T )‖E

,

Θ
(F )
2 := ‖κ1b(F )

1 + κ2b̃
(F )
2 + κ3b

(F )
3 ‖E,

where b̃
(F )
2 := b

(F )
2 + b

(F )
4 and (κ1, κ2, κ3)

T is the solution of the algebraic system⎛⎜⎝ a(b
(F )
1 ,b

(F )
1 ) a(b̃

(F )
2 ,b

(F )
1 ) a(b

(F )
3 ,b

(F )
1 )

a(b
(F )
1 , b̃

(F )
2 ) a(b̃

(F )
2 , b̃

(F )
2 ) a(b

(F )
3 , b̃

(F )
2 )

a(b
(F )
1 ,b

(F )
3 ) a(b̃

(F )
2 ,b

(F )
3 ) a(b

(F )
3 ,b

(F )
3 )

⎞⎟⎠
⎛⎝κ1
κ2
κ3

⎞⎠ =

⎛⎜⎝ f(b
(F )
1 )− a(uh,b

(F )
1 )

f(b̃
(F )
2 )− a(uh, b̃

(F )
2 )

f(b
(F )
3 )− a(uh,b

(F )
3 )

⎞⎟⎠ ,

and

Θ
(T )
2 := ‖

5∑
�=1

κ�b̃
(T )
� ‖E,

where b̃
(T )
1 := b

(T )
1 , b̃

(T )
2 := b

(T )
2 − b

(T )
4 , b̃

(T )
3 := b

(T )
3 , b̃

(T )
4 := b

(T )
4 − b

(T )
6 , b̃

(T )
5 := b

(T )
5

and (κ1, . . . , κ5)
T is the solution of the algebraic system(

a(b̃
(T )
k , b̃

(T )
� )

)
k,�=1,...,5

(
κ�
)
�=1,...,5

=
(
f(b̃

(T )
k )− a(uh, b̃

(T )
k )

)
k=1,...,5

.
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5.2. Decomposition ofRT 2(Kh). We now turn our attention to the trace space H
−1/2
‖ (divΓ,Γ).

We aim to find a H
−1/2
‖ (divΓ,Γ)-stable decomposition of RT 2(Kh) using the results of the

last section. Let m denote the number of edges and n the number of elements in Kh, the tri-

angular or quadrilateral trace mesh of Th. We apply the trace mapping (4.3) to decomposition

(5.1) for tetrahedra and obtain the decomposition

RT 2(Kh) = RT 1(Kh)⊕ curlΓ S̃2(Kh)⊕ R̃T
⊥
2 (Kh) (5.23)

for triangles, where

R̃T ⊥
2 (Kh) := {λh ∈ RT 2(Kh) :

∫
e
λh · n q ds = 0, ∀q ∈ P1, e side of Kh}

and S̃k(Kh) := Sk(Kh) \ Sk−1(Kh). Here Sk(Kh) is the space of piecewise polynomials in

two dimensions of degree k.

For K ∈ Kh there holds |Sk(K)| = 1
2(k + 1)(k + 2), and the dimension of RT 2(K)

is |RT 2(K)| = 8, corresponding to two basis functions per side and two inner functions.

If K ∈ Kh is the face of the element T ∈ Th, then its three sides are three edges of T ,

so that the three basis functions spanning RT 1(K) are the images of the the three basis

functions of ND1(T ) corresponding to those edges under the mapping γ×t . The three ba-

sis functions of S̃2(K) are the images of the three basis functions of S̃2(T ) correspond-

ing to those edges and the two basis functions spanning R̃T ⊥
2 (K) are the images of the

two basis functions of ÑD⊥
1 (T ) corresponding to the face K. Counting the basis func-

tions yields that (5.23) is a direct sum. We write S̃2(Kh) = span{ϕ(e1), . . . , ϕ(em)} and

R̃T ⊥
2 (Kh) = span{λ(K1)

1 ,λ
(K1)
2 , . . . ,λ

(Kn)
1 ,λ

(Kn)
2 }. Localization as before yields

RT 2(Kh) = RT 1(Kh)⊕
m∑
i=1

span{curlΓ ϕ(ei)} ⊕
n∑

j=1

span{λ(Kj)
1 ,λ

(Kj)
2 }. (5.24)

For the trace mesh of a hexahedral grid we obtain the decomposition

RT 2(Kh) = RT 1(Kh)⊕ curlΓ S̃2(Kh)⊕ R̃T
⊥,−
2 (Kh), (5.25)

with curlΓ S̃2(K) = {curlΓ ϕ(e0), . . . , curlΓ ϕ
(e3), curlΓ ϕ

(K)} (with a suitable bubble func-

tion ϕ(K)) and R̃T ⊥,−
2 (K) = {λ(K)

1 ,λ
(K)
3 ,λ

(K)
2 + λ

(K)
4 } where λ

(K)
i (i = 1, . . . , 4) are the

images of the basis functions b
(F )
i in ÑD⊥

2 (T ) corresponding to the face K. Again, (5.25)

constitutes a direct sum (there holds dimRT 2(K) = 12 for quadrilateral elements), and its
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localization reads

RT 2(Kh) = RT 1(Kh)⊕
m∑
i=1

span{curlΓ ϕ(ei)}

⊕
n∑

j=1

(
span{curlΓ ϕ(Kj)} ⊕ span{λ(Kj)

1 ,λ
(Kj)
3 ,λ

(Kj)
2 + λ

(Kj)
4 }

)
. (5.26)

The task at issue is to show the stability of (5.24) resp. (5.26). To this aim, define for the

tetrahedral case the projection operators

p1 : RT 2(Kh)→ RT 1(Kh),

p(K) : RT 2(Kh)→ span{λ(K)
1 ,λ

(K)
2 },

r(e) : RT 2(Kh)→ span{curlΓ ϕ(e)}
and for quadrilaterals the projections

p̃1 : RT 2(Kh)→ RT 1(Kh),

p̃(K) : RT 2(Kh)→ span{λ(K)
1 ,λ

(K)
3 ,λ

(K)
2 + λ

(K)
4 },

r̃(e) : RT 2(Kh)→ span{curlΓ ϕ(e)},
r̃(K) : RT 2(Kh)→ span{curlΓ ϕ(K)},

so that the decompositions (5.24) resp. (5.26) can then be written as

λ2 = p1λ2 +
m∑
i=1

r(ei)λ2 +
n∑

j=1

p(Kj)λ2 (5.27)

resp.

λ2 = p̃1λ2 +
m∑
i=1

r̃(ei)λ2 +
n∑

j=1

(
r̃(Kj)λ2 + p̃(Kj)λ2

)
. (5.28)

Now the stability of these RT 2-decompositions can be proven via the stability of the ND2-

decompositions, as we will show in the following lemma. For the sake of clarity, we will denote

the H−1/2(divΓ,Γ)-norm simply by ‖·‖ in the statement of the lemma.

Lemma 5.7. Under the assumption that there exists a continuous extension fromRT p(Kh) to
NDp(Th) which also preserves the basis functions, the decompositions (5.24) resp. (5.26) are
stable with respect to the H−1/2(divΓ,Γ)-norm, i.e. for all λ2 ∈ RT 2(Kh) there holds

‖λ2‖2 � ‖p1λ2‖2 +
m∑
i=1

‖p(ei)λ2‖2 +
n∑

j=1

‖p(Kj)λ2‖2 (5.29)
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resp.

‖λ2‖2 � ‖p̃1λ2‖2 +
m∑
i=1

‖p̃(ei)λ2‖2 +
n∑

j=1

(
‖r̃(Kj)λ2‖2 + ‖p̃(Kj)λ2‖2

)
. (5.30)

Remark 1. There exists a continuous extension operator from RT p(Kh) to NDp(Th), see

Alonso & Valli [40]. But this is only valid for the whole spaces NDp(Th) and RT p(Kh).
Although, we know that for every basis functions φ ∈ RT p(Kh) there exists a basis function

b ∈ NDp(Th) with γ×t (b) = φ it is not clear if the estimate

‖b‖H(curl,Ω) ≤ C ‖φ‖
H

−1/2
‖ (divΓ,Γ)

is independent of the mesh size h.

Proof. [of Lemma 5.7] We take an arbitrary λ2 ∈ RT 2(Kh). We decompose λ2 according

to (5.27) resp. (5.28) into λ2 =
∑r

i=0 λ2,i (where r = m + n for a triangular mesh and r =
m+ 2n for a quadrilateral mesh). From [40] we know that there exists a u2 ∈ ND2(Kh) with

γ×t u2 = λ2 and ‖u2‖H(curl,Ω) � ‖λ2‖H−1/2
‖ (divΓ,Γ)

. Thus, u2 owns a stable decomposition

according to Lemma 5.2 u2 =
∑K

j=0 u2,j with K = M + 2N + 2L. We now assume that for

every λ2,i there exists a u2,j of the decomposition with γ×t u2,j = λ2,i and ‖u2,j‖H(curl,Ω) �
‖λ2,j‖H−1/2

‖ (divΓ,Γ)
. Using the continuity of γ×t we then obtain the equivalences

‖u2‖H(curl,Ω) � ‖λ2‖H−1/2
‖ (divΓ,Γ)

,

‖u2,i‖H(curl,Ω) � ‖λ2,i‖H−1/2
‖ (divΓ,Γ)

, i = 1, . . . , r.

This, together with the ND2-stability
∑r

i=0‖u2,i‖H(curl,Ω) � ‖u2‖H(curl,Ω) in Lemma 5.2

proves the statement of the lemma.

�

Now let V (V ) denote the vectorial (scalar) single layer potential operator for the Laplace

equation defined for vector (scalar) functions λ (λ) by

V(λ)(x) := γt

∫
Γ

Φ(x,y)λ(x) dS(y), x ∈ Γ,

V (λ)(x) :=

∫
Γ

Φ(x,y)λ(x) dS(y), x ∈ Γ,

with the Laplace-kernel Φ(x,y) := 1
4π|x−y| , then we can define on H

−1/2
‖ (divΓ,Γ) a contin-

uous sesquilinear form b which satisfies a Gårdings inequality by

b(λ,w) = α〈V divΓ λ, divΓw〉Γ + β〈Vλ,w〉Γ (5.31)
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with α, β ∈ C \ {0}, α
β /∈ R<0. We will consider

‖λ‖e := |b(λ,λ)|1/2,
the energy norm induced by b, equivalent to the H

−1/2
‖ (divΓ,Γ)-norm. We now search a p-

hierarchical error estimator for the Galerkin method using Raviart-Thomas elements for the

problem

Find λ ∈ H
−1/2
‖ (divΓ,Γ) such that

b(λ,w) = g(w) (5.32)

for all w ∈ H
−1/2
‖ (divΓ,Γ)

with a right-hand side g ∈ H
−1/2
‖ (divΓ,Γ)

′. Having proven the stability estimates (5.29)

and (5.30), the principal work has already been done. We now must simply proceed analo-

gously to the construction of the error estimator for Nédélec elements.

Let λh and λ2 denote the solutions to the Galerkin formulations inRT 1(Kh) andRT 2(Kh).
We again require the saturation assumption

‖λ− λ2‖e ≤ δh‖λ− λh‖e (5.33)

to hold with δh ≤ δ < 1. Exactly as before in Lemma 5.3 we then have:

Lemma 5.8. If the saturation assumption (5.33) holds, one has

‖ε2‖e ≤ ‖λ− λh‖e ≤
1

1− δ
‖ε2‖e

with the error term ε2 := λ2 − λh.

We now define a decoupled sesquilinear form b̃ onRT 2(Kh)×RT 2(Kh) according to the

decompositions (5.27) and (5.28) via

b̃(λ2,w1) := b(p1λ2, p1w1) +

m∑
i=1

b(r(ei)λ2, r
(ei)w1) +

n∑
j=1

b(p(Kj)λ2, p
(Kj)w1) (5.34)

for triangles and

b̃(λ2,w1) := b(p̃1λ2, p̃1w1) +
m∑
i=1

b(r̃(ei)λ2, r̃
(ei)w1)

+
n∑

j=1

(
b(r̃(Kj)λ2, r̃

(Kj)w1) + b(p̃(Kj)λ2, p̃
(Kj)w1)

) (5.35)

for quadrilaterals. Thanks to Lemma 5.7, b̃ is equivalent to b and thus continuous on H
−1/2
‖ (divΓ,Γ)

and satisfies a Gårdings inequality. Define the error term ε̃2 ∈ RT 2(Kh) by

b̃(ε̃2, ζ) = b(ε2, ζ) = g(η)− b(λh, ζ) ∀ζ ∈ RT 2(Kh). (5.36)
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Just as before in Lemma 5.4 there now holds

Lemma 5.9. For ε̃2 defined by (5.36) there holds

‖ε̃2‖e � ‖ε2‖e.
Setting η = ‖ε‖e, the last two lemmas immediately give the following two theorems:

Proposition 5.10. If the saturation assumption (5.33) is satisfied, then on a triangular grid
there holds

η � ‖λ− λh‖e � 1

1− δ
η

with the local a posteriori estimator

η2 :=

m∑
i=1

(
ϑ(ei)

)2
+

n∑
j=1

(
ϑ(Kj)

)2
.

The local contribution on a triangle K (with sides corresponding to the indices i = 0, 1, 2)

is

η2K :=
1

2

2∑
i=0

(
ϑ(ei)

)2
+

(
ϑ(K)

)2

with

ϑ(e) :=
|g(curlΓ ϕ(e))− b(λh, curlΓ ϕ

(e))|
‖curlΓ ϕ(e)‖e

,

ϑ(K) := ‖κ1λ(K)
1 + κ2λ

(K)
2 ‖e,

where (κ1, κ2)
T is the solution of the LSE(

b(λ
(K)
1 ,λ

(K)
1 ) b(λ

(K)
2 ,λ

(K)
1 )

b(λ
(K)
1 ,λ

(K)
2 ) b(λ

(K)
2 ,λ

(K)
2 )

)(
κ1
κ2

)
=

(
g(λ

(K)
1 )− b(λh,λ

(K)
1 )

g(λ
(K)
2 )− b(λh,λ

(K)
2 )

)
.

The analogous statement for the quadrilateral case reads:

Proposition 5.11. If the saturation assumption (5.33) is satisfied, then on a quadrilateral grid
there holds

η � ‖λ− λh‖e � 1

1− δ
η

with the local a posteriori error estimator

η2 :=

m∑
i=1

(
ϑ(ei)

)2
+

n∑
j=1

((
ϑ
(Kj)
1

)2
+

(
ϑ
(Kj)
2

)2
)
.

Here, the local contribution on an element K (whose sides correspond to the indices i =
1, 2, 3, 4) is

η2K :=
1

2

4∑
i=1

(
ϑ(ei)

)2
+

(
ϑ
(K)
1

)2
+

(
ϑ
(K)
2

)2
,
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with

ϑ(e) :=
|g(curlΓ ϕ(e))− b(λh, curlΓ ϕ

(e))|
‖curlΓ ϕ(e)‖e

,

ϑ
(K)
1 :=

|g(curlΓ ϕ(K))− b(λh, curlΓ ϕ
(K))|

‖curlΓ ϕ(K)‖e
,

ϑ
(K)
2 := ‖κ1λ(K)

1 + κ2λ̃
(K)

2 + κ3λ
(K)
3 ‖e,

where λ̃
(K)

2 := λ
(K)
2 + λ

(K)
4 and (κ1, κ2, κ3)

T is the solution of the algebraic system⎛⎜⎜⎝b(λ
(K)
1 ,λ

(K)
1 ) b(λ̃

(K)

2 ,λ
(K)
1 ) b(λ

(K)
3 ,λ

(K)
1 )

b(λ
(K)
1 , λ̃

(K)

2 ) b(λ̃
(K)

2 , λ̃
(K)

2 ) b(λ
(K)
3 , λ̃

(K)

2 )

b(λ
(K)
1 ,λ

(K)
1 ) b(λ̃

(K)

2 ,λ
(K)
1 ) b(λ

(K)
3 ,λ

(K)
1 )

⎞⎟⎟⎠
⎛⎝κ1
κ2
κ2

⎞⎠

=

⎛⎜⎝g(λ
(K)
1 )− b(λh,λ

(K)
1 )

g(λ̃
(K)

2 )− b(λh, λ̃
(K)

2 )

g(λ
(K)
3 )− b(λh,λ

(K)
3 )

⎞⎟⎠ . (5.37)

6. APPLICATION TO THE COUPLING FORMULATION

We will now apply the theory of the last section to the symmetric eddy current formulation

coupling finite elements in a bounded domain and boundary elements on the boundary for

the homogeneous exterior domain as described in Section 3. To derive a p-hierarchical error

estimator for the Galerkin method (3.1), let X := H(curl,Ω)×H
−1/2
‖ (divΓ 0,Γ) denote the

continuous space of the variational formulation, Xh := ND1(Th) × curlΓS̃1(Kh) the finite

element space of the Galerkin formulation and X2 := ND2(Th) × curlΓS̃2(Kh) the higher

order finite element space, and let

A(u,λ;v, ζ) := (μ−1 curl u, curl v)Ω + iω(σu,v)Ω − 〈WuΓ,vΓ〉Γ
+ 〈K̃λ,vΓ〉Γ + 〈(I −K)uΓ, ζ〉Γ + 〈Vλ, ζ〉Γ

(6.1)

be the sesquilinear form on X × X from (2.1) and L(v, ζ) ∈ X ′ the right hand side given by

(2.1); there holds L(0, ζ) = 0. Theorem 7.1 in [14] implies that the energy norm induced by

A is equivalent to the natural norm ‖·‖X on X . Let us define on X × X the sesquilinear form

Q(u,λ;v, ζ) := a(u,v) + b(λ, ζ)

with a(u,v) := (μ−1 curl u, curl v)Ω+ iω(σu,v)Ω and b(λ, ζ) := 〈Vλ, ζ〉Γ and the energy

norms

‖v‖2E := |a(v,v)|, ‖ζ‖2e := |b(ζ, ζ)|

on H(curl,Ω) resp. H
−1/2
‖ (divΓ 0,Γ). Note that the sesquilinear form a corresponds to the

a from (5.13) with α = μ−1 and β = iωσ and the sesquilinear form b corresponds to b from
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(5.31) with β = 1. The α〈V divΓ λ, divΓ ζ〉Γ-part from (5.31) does not appear here, as we are

dealing with divergence-free functions on Γ. We further define the “decoupled” sesquilinear

forms

Q̃(u,λ;v, ζ) = ã(u,v) + b̃(λ, ζ)

with ã from (5.17) resp. (5.18) and b̃ from (5.34) resp. (5.35).

Now let (u,λ) ∈ X be the solution of (2.1), (uh,λh) ∈ Xh the Galerkin solution of (3.1)

and (u2,λ2) ∈ X2 the Galerkin solution on the higher order finite element space. As before,

M denotes the number of edges in Th, m < M the number of edges in Kh (those on Γ), N the

number of faces in Th, n < N the number of faces in Kh (those on Γ) and L the number of

elements in Th. We proceed as before:

Define the error terms (e2, ε2) ∈ X2 by

Q(e2, ε2;v, ζ) = L(v, ζ)−A(uh,λh;v, ζ) ∀(v, ζ) ∈ X2

and (ẽ2, ε̃2) ∈ X2 by

Q̃(ẽ2, ε̃2;v, ζ) = Q(e2, ε2;v, ζ) ∀(v, ζ) ∈ X2.

Using the notation of Section 5, define for tetrahedral grids the quantities

Θ(ei) := ‖P (ei)ẽ2‖E, i = 1, . . . ,M,

Θ(Fj) := ‖R(Fj)ẽ2‖E j = 1, . . . , N,

ϑ(ei) := ‖r(ei)ε̃2‖e i = 1, . . . ,m.

There then holds (again using notation from Section 5)

Θ(e) =
|L(gradφ(e), 0)−A(uh,λh;gradφ(e), 0)|

‖gradφ(e)‖E
,

Θ(F ) = ‖κ1b(F )
1 + κ2b

(F )
3 ‖E,

where (κ1, κ2)
T is the solution of the LSE(

a(b
(F )
1 ,b

(F )
1 ) a(b

(F )
2 ,b

(F )
1 )

a(b
(F )
1 ,b

(F )
2 ) a(b

(F )
2 ,b

(F )
2 )

)(
κ1
κ2

)
=

(
L(b(F )

1 , 0)−A(uh,λh;b
(F )
1 , 0)

L(b(F )
2 , 0)−A(uh,λh;b

(F )
2 , 0)

)
,

and further

ϑ(e) =
|A(uh,λh, ; 0, curlΓϕ

(e))|
‖curlΓϕ(e)‖e

.

The quantities ϑ(Fj) := ‖p(Fj)ε̃2‖e do not appear here, as ε̃2 ∈ curlΓS̃2 (i.e. p(Fj)ε̃2 = 0).

As usual, we now require the saturation assumption

‖(u− u2,λ− λ2)‖X ≤ δh‖(u− uh,λ− λh)‖X (6.2)

with a δh ≤ δ < 1. There holds
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Theorem 6.1. If the saturation assumption (6.2) is satisfied, then on a tetrahedral grid there
holds

η � ‖(u− uh,λ− λh)‖X � 1

1− δ
η

with the local a posteriori estimator

η2 :=

M∑
i=1

(
Θ(ei)

)2
+

N∑
j=1

(
Θ(Fj)

)2
+

m∑
i=1

(
ϑ(ei)

)2
.

Proof. From the continuity and coercitivity of A we have

‖(u2 − uh,λ2 − λh)‖2X � A(u2 − uh,λ2 − λh;u2 − uh,λ2 − λh)

= L(u2 − uh,λ2 − λh)−A(uh,λh;u2 − uh,λ2 − λh)

= Q(e2, ε2;u2 − uh,λ2 − λh)

� ‖(e2, ε2)‖X ‖(u2 − uh,λ2 − λh)‖X .

Hence there holds ‖(u2−uh,λ2−λh)‖X � ‖(e2, ε2)‖X . We obtain the reverse inequality in

the following way:

‖(e2, ε2)‖2X = Q(e2, ε2; e2, ε2)
= L(e2, ε2)−A(uh,λh; e2, ε2)

= A(u2 − uh,λ2 − λh; e2, ε2)

� ‖(u2 − uh,λ2 − λh)‖X ‖(e2, ε2)‖X ,

i.e. ‖(e2, ε2)‖X � ‖(u2 − uh,λ2 − λh)‖X , and so we have proven the equivalence

‖(e2, ε2)‖X � ‖(u2 − uh,λ2 − λh)‖X .

Now Lemmas 5.4 and 5.9 yield η := ‖(ẽ2, ε̃2)‖X � ‖(e2, ε2)‖X , and we have thus proven the

statement of the theorem. �

The same procedure for hexahedral grids yields the quantities

Θ(e) :=
|L(gradφ(e), 0)−A(uh,λh;gradφ(e), 0)|

‖gradφ(e)‖E
,

Θ
(F )
1 :=

|L(gradφ(F ), 0)−A(uh,λh;gradφ(F ), 0)|
‖gradφ(F )‖E

,

Θ
(T )
1 :=

|L(gradφ(T ), 0)−A(uh,λh;gradφ(T ), 0)|
‖gradφ(T )‖E

,

Θ
(F )
2 := ‖κ1b(F )

1 + κ2b̃
(F )
2 + κ3b

(F )
3 ‖E,
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where b̃
(F )
2 := b

(F )
2 + b

(F )
4 and (κ1, κ2, κ3)

T is the solution of the LSE⎛⎜⎝ a(b
(F )
1 ,b

(F )
1 ) a(b̃

(F )
2 ,b

(F )
1 ) a(b

(F )
3 ,b

(F )
1 )

a(b
(F )
1 , b̃

(F )
2 ) a(b̃

(F )
2 , b̃

(F )
2 ) a(b

(F )
3 , b̃

(F )
2 )

a(b
(F )
1 ,b

(F )
3 ) a(b̃

(F )
2 ,b

(F )
3 ) a(b

(F )
3 ,b

(F )
3 )

⎞⎟⎠
⎛⎝κ1
κ2
κ3

⎞⎠

=

⎛⎜⎝ L(b(F )
1 , 0)−A(uh,λh;b

(F )
1 , 0)

L(b̃(F )
2 , 0)−A(uh,λh; b̃

(F )
2 , 0)

L(b(F )
3 , 0)−A(uh,λh;b

(F )
3 , 0)

⎞⎟⎠ ,

and further

Θ
(T )
2 := ‖

5∑
�=1

κ�b̃
(T )
� ‖E,

where b̃
(T )
1 := b

(T )
1 , b̃

(T )
2 := b

(T )
2 − b

(T )
4 , b̃

(T )
3 := b

(T )
3 , b̃

(T )
4 := b

(T )
4 − b

(T )
6 , b̃

(T )
5 := b

(T )
5 ,

and (κ1, . . . , κ5)
T is the solution of the algebraic system(

a(b̃
(T )
k , b̃

(T )
� )

)
k,�=1,...,5

(
κ�
)
�=1,...,5

=
(
L(b̃(T )

k , 0)−A(uh,λh; b̃
(T )
k , 0)

)
k=1,...,5

,

and further

ϑ(e) :=
|A(uh,λh; 0, curlΓϕ

(e))|
‖curlΓϕ(e)‖e

,

ϑ(F ) :=
|A(uh,λh; 0, curlΓϕ

(F ))|
‖curlΓϕ(F )‖e

.

The corresponding theorem reads (the proof is the same as for the last theorem):

Theorem 6.2. If the saturation assumption (6.2) is satisfied, then on a hexahedral grid there
holds

η � ‖(u− uh,λ− λh)‖X � 1

1− δ
η

with the local a posteriori estimator

η2 :=

M∑
i=1

(
Θ(ei)

)2
+

N∑
j=1

((
Θ

(Fj)
1

)2
+

(
Θ

(Fj)
2

)2
)
+

L∑
k=1

(
Θ

(Tk)
1

)2
+

(
Θ

(Tk)
2

)2

+
m∑
i=1

(
ϑ(ei)

)2
+

n∑
j=1

(
ϑ(Fj)

)2
.
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7. NUMERICAL EXPERIMENTS

We perform some numerical tests on hexahedral meshes to see if the error estimator gives

a reliable and efficient estimate of the Galerkin error and to test its usefulness for an adaptive

refinement scheme.

Let X := H(curl,Ω) × H
−1/2
‖ (divΓ 0,Γ) and Xh := ND1(Th) × curlΓ S1(Kh) the

finite element space as described above. Furthermore, we denote by X2 := ND2(Th) ×
curlΓ S1(Kh) the higher order finite element space. Here, we just consider a mesh of hex-

ahedrons.

We define the energy norms on H(curl,Ω) and H
−1/2
‖ (divΓ 0,Γ) by

‖v‖2E :=
∣∣(μ−1 curl u, curl u)Ω + iω(σu,u)Ω

∣∣, ‖λ‖2e := |〈Vλ,λ〉Γ|.
In the first experiment we compute the solution to the Galerkin system as given in (3.1) with

Ω = (−1, 1)3, Γ = ∂Ω, on a series of uniform hexahedral meshes, obtained by dividing each

edge of Ω into n equal parts. On grid n we thus have a meshwidth of h = 2
n . We then compare

the energy norm
√
‖u− uh‖2E + ‖λ− λh‖2e of the Galerkin error with the value of the error

estimator. In the second example we will use the error estimator to perform adaptive mesh

refinements. In the tables, n will denote the mesh number (as defined above) and Nu and Nλ

the number of degrees of freedom for the fem resp. the bem variable. The choice of Ω in both

examples is only for simplicity; note that our above analysis is not restricted to convex domains

Ω. All computations were performed using the program package maiprogs [41] (for further

details see [20]).

Example 1. We choose the exact solution

u(x) = curl(Gρ)(x) := curl

∫
Ω

1

‖x− y‖ρ(y) dy

with the density function ρ(x) = ρ(x)
(

1
1
1

)
, where

ρ(x) =
(
(1− x21)(1− x22)(1− x23)

)2
x1x2x3.

We compute the Galerkin method for n = 1, . . . , 13 with hexahedral elements. In Figure 2

one sees that the error indicator η behaves nearly the same as the error in energy norm, the

effectivity indices q = η
e , calculated in Table 1, are nearly constant.

Example 2. We now use the error estimator to construct an adaptive mesh. We use hexahedral

elements without hanging nodes (with the drawback that the resulting mesh is no longer form-

regular). Our geometry remains the cube Ω = (−1, 1)3. We set μ = 1 in Ω and choose a

discontinuous σ, namely

σ =

{
0.1, 1

3 < x1, x2, x3 < 1

1, else
.

For our right hand side in (2.1) we choose the function J0 = (1, 1, 1) in Ω and J0 = 0 in ΩE .

Note that also in this case (2.1) holds. We start by computing the Galerkin solution for the
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 0.01

 0.1

 1

 10  100  1000  10000
degrees of freedom

error
hier. est.

FIGURE 2. Energy norm e of the Galerkin error and the 2-level hierarchical

error estimator η of Example 1.

n h DOF e η q = η
e

2 1 80 0.30987 0.15081 0.4867

3 0.667 200 0.30369 0.06440 0.2121

4 0.5 398 0.23548 0.05420 0.2302

5 0.4 692 0.18994 0.03879 0.2042

6 0.333 1100 0.15938 0.02969 0.1863

7 0.143 1640 0.13748 0.02410 0.1753

8 0.25 2330 0.12095 0.02037 0.1684

9 0.222 3188 0.10800 0.01770 0.1639

10 0.2 4232 0.09755 0.01568 0.1607

11 0.091 5480 0.08894 0.01409 0.1584

12 0.083 6950 0.08172 0.01281 0.1568

13 0.077 8660 0.07558 0.01175 0.1555

TABLE 1. Energy norm e of the Galerkin error, the 2-level hierarchical error

estimator η and the effectivity indices q = η
e of Example 1.

uniform mesh with n = 3. The refinement algorithm then proceeds by first refining the 10% of
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FIGURE 3. The adaptive meshes for Example 2 using the error estimator. It is

σ = 0.1 on the grey cube and σ = 1 on the rest of the domain.

the elements on which the local contributions of the hierarchical error estimator are the largest

and by then further refining in order to eliminate hanging nodes, since our algorithm yet cannot

handle hanging nodes for 2nd order finite elements. We expect the algorithm to refine the mesh

near the σ-discontinuity interface between Ω(1) = (13 , 1)
3 and Ω(0) = Ω \ Ω(1), and especially

close to the vertex (13 ,
1
3 ,

1
3). Figure 3 shows adaptively generated meshes. Figure 4 shows that

the adaptive refinement gives an improvement compared to uniform meshes. We expect even

faster convergence when hanging nodes are allowed which avoid unnecessary refinement.
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[12] H. Ammari and J.-C. Nédélec, Coupling of finite and boundary element methods for the time-harmonic
Maxwell equations. Part II: a symmetric formulation, Oper. Theory Adv. Appl. 110 (1999), Birkhäuser Verlag,
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