• Title/Summary/Keyword: heuristic search method

Search Result 286, Processing Time 0.024 seconds

Operation Scheduling System for Hull Block Fabrication in Shipbuilding using Genetic Algorithm (유전 알고리즘을 이용한 선각 가공 작업일정계획 시스템의 개발에 관한 연구)

  • Cho, Kyu-Kab;Kim, Young-Goo;Ryu, Kwang-Ryel;Hwang, Jun-Ha;Choi, Hyung-Rim
    • IE interfaces
    • /
    • v.11 no.3
    • /
    • pp.115-128
    • /
    • 1998
  • This paper presents a development of operation scheduling and reactive operation scheduling system for hull fabrication. The methodology for implementing operation scheduling system is HHGA(Hierarchical Hybrid Genetic Algorithm) which exploits both the global perspective of the genetic algorithm and the rapid convergence of the heuristic search for operation scheduling. The methodology for the reactive operation scheduling is the revised HHGA which consists of manual schedule editor for occurrence of exceptional events and the revised scheduling method used in operation scheduling. As the results of experiment, it has been confirmed that HHGA is able to search good operation scheduling within reasonable time, and the revised HHGA is able to search load-balanced reactive operation scheduling with minimum changes of initial operation schedule within short period of time.

  • PDF

Discrete Optimization of Plane Frame Structures Using Genetic Algorithms (유전자 알고리즘을 이용한 뼈대구조물의 이산최적화)

  • 김봉익;권중현
    • Journal of Ocean Engineering and Technology
    • /
    • v.16 no.4
    • /
    • pp.25-31
    • /
    • 2002
  • This paper is to find optimum design of plane framed structures with discrete variables. Global search algorithms for this problem are Genetic Algorithms(GAs), Simulated Annealing(SA) and Shuffled Complex Evolution(SCE), and hybrid methods (GAs-SA, GAs-SCE). GAs and SA are heuristic search algorithms and effective tools which is finding global solution for discrete optimization. In particular, GAs is known as the search method to find global optimum or near global optimum. In this paper, reinforced concrete plane frames with rectangular section and steel plane frames with W-sections are used for the design of discrete optimization. These structures are designed for stress constraints. The robust and effectiveness of Genetic Algorithms are demonstrated through several examples.

An Expert System for the Real-Time Computer Control of the Large-Scale System (대규모 시스템의 실시간 컴퓨터 제어를 위한 전문가 시스템)

  • Ko, Yun-Seok
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.48 no.6
    • /
    • pp.781-788
    • /
    • 1999
  • In this paper, an expert system is proposed, which can be effectively applied to the large-scale systems with the diversity time constraints, the objectives and the unfixed system structure. The inference scheme of the expert system have the integrated structure composed of the intuitive inference module and logical inference module in order to support effectively the operating constraints of system. The intuitive inference module is designed using the pattern matching or pattern recognition method in order to search a same or similar pattern under the fixed system structure. On the other hand, the logical inference module is designed as the structure with the multiple inference mode based on the heuristic search method in order to determine the optimal or near optimal control strategies satisfing the time constraints for system events under the unfixed system structure, and in order to use as knowledge generator. Here, inference mode consists of the best-first, the local-minimum tree, the breadth-iterative, the limited search width/time method. Finally, the application results for large-scale distribution SCADA system proves that the inference scheme of the expert system is very effective for the large-scale system. The expert system is implemented in C language for the dynamic mamory allocation method, database interface, compatability.

  • PDF

Symbiotic organisms search algorithm based solution to optimize both real power loss and voltage stability limit of an electrical energy system

  • Pagidi, Balachennaiah;Munagala, Suryakalavathi;Palukuru, Nagendra
    • Advances in Energy Research
    • /
    • v.4 no.4
    • /
    • pp.255-274
    • /
    • 2016
  • This paper presents a novel symbiotic organisms search (SOS) algorithm to optimize both real power loss (RPL) and voltage stability limit (VSL) of a transmission network by controlling the variables such as unified power flow controller (UPFC) location, UPFC series injected voltage magnitude and phase angle and transformer taps simultaneously. Mathematically, this issue can be formulated as nonlinear equality and inequality constrained multi objective, multi variable optimization problem with a fitness function integrating both RPL and VSL. The symbiotic organisms search (SOS) algorithm is a nature inspired optimization method based on the biological interactions between the organisms in ecosystem. The advantage of SOS algorithm is that it requires a few control parameters compared to other meta-heuristic algorithms. The proposed SOS algorithm is applied for solving optimum control variables for both single objective and multi-objective optimization problems and tested on New England 39 bus test system. In the single objective optimization problem only RPL minimization is considered. The simulation results of the proposed algorithm have been compared with the results of the algorithms like interior point successive linear programming (IPSLP) and bacteria foraging algorithm (BFA) reported in the literature. The comparison results confirm the efficacy and superiority of the proposed method in optimizing both single and multi objective problems.

Development of the Meta-heuristic Optimization Algorithm: Exponential Bandwidth Harmony Search with Centralized Global Search (새로운 메타 휴리스틱 최적화 알고리즘의 개발: Exponential Bandwidth Harmony Search with Centralized Global Search)

  • Kim, Young Nam;Lee, Eui Hoon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.2
    • /
    • pp.8-18
    • /
    • 2020
  • An Exponential Bandwidth Harmony Search with Centralized Global Search (EBHS-CGS) was developed to enhance the performance of a Harmony Search (HS). EBHS-CGS added two methods to improve the performance of HS. The first method is an improvement of bandwidth (bw) that enhances the local search. This method replaces the existing bw with an exponential bw and reduces the bw value as the iteration proceeds. This form of bw allows for an accurate local search, which enables the algorithm to obtain more accurate values. The second method is to reduce the search range for an efficient global search. This method reduces the search space by considering the best decision variable in Harmony Memory (HM). This process is carried out separately from the global search of the HS by the new parameter, Centralized Global Search Rate (CGSR). The reduced search space enables an effective global search, which improves the performance of the algorithm. The proposed algorithm was applied to a representative optimization problem (math and engineering), and the results of the application were compared with the HS and better Improved Harmony Search (IHS).

A Lagrangian Heuristic for the Multidimensional 0-1 Knapsack Problem (다중 배낭 문제를 위한 라그랑지안 휴리스틱)

  • Yoon, You-Rim;Kim, Yong-Hyuk
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.20 no.6
    • /
    • pp.755-760
    • /
    • 2010
  • In general, Lagrangian method for discrete optimization is a kind of technique to easily manage constraints. It is traditionally used for finding upper bounds in the branch-and-bound method. In this paper, we propose a new Lagrangian search method for the 0-1 knapsack problem with multiple constraints. A novel feature of the proposed method different from existing Lagrangian approaches is that it can find high-quality lower bounds, i.e., feasible solutions, efficiently based on a new property of Lagrangian vector. We show the performance improvement of the proposed Lagrangian method over existing ones through experiments on well-known large scale benchmark data.

Finding Rectilinear(L1), Link Metric, and Combined Shortest Paths with an Intelligent Search Method (지능형 최단 경로, 최소 꺾임 경로 및 혼합형 최단 경로 찾기)

  • Im, Jun-Sik
    • The Transactions of the Korea Information Processing Society
    • /
    • v.3 no.1
    • /
    • pp.43-54
    • /
    • 1996
  • This paper presents new heuristic search algorithms for searching rectilinear r(L1), link metric, and combined shortest paths in the presence of orthogonal obstacles. The GMD(GuidedMinimum Detour) algorithm combines the best features of maze-running algorithms and line-search algorithms. The SGMD(Line-by-Line GuidedMinimum Detour)algorithm is a modiffication of the GMD algorithm that improves efficiency using line-by-line extensions. Our GMD and LGMD algorithms always find a rectilinear shortest path using the guided A search method without constructing a connection graph that contains a shortest path. The GMD and the LGMD algorithms can be implemented in O(m+eloge+NlogN) and O(eloge+NlogN) time, respectively, and O(e+N) space, where m is the total number of searched nodes, is the number of boundary sides of obstacles, and N is the total number of searched line segment. Based on the LGMD algorithm, we consider not only the problems of finding a link metric shortest path in terms of the number of bends, but also the combined L1 metric and Link Metric shortest path in terms of the length and the number of bands.

  • PDF

Image database construction for IC chip analysis CAD system (IC칩 분석용 CAD 시스템의 영샹 데이터베이스 구축)

  • 이성봉;백영석;박인학
    • Journal of the Korean Institute of Telematics and Electronics A
    • /
    • v.33A no.5
    • /
    • pp.203-211
    • /
    • 1996
  • This paper describes CAD tools for the construction of image database in IC chip analysis CAD system. For IC chip analysis by high-resolution microscopy, the image database is essential to manage more than several thousand images. But manual database construction is error-prone and time-consuming. In order to solve this problem, we develop a set of CAD toos that include image grabber to capture chip images, image editor to make the whole chip image database from the grabbed images, and image divider to reconstruct the database that consists of evenly overlapped images for efficient region search. we also develop an interactive pattern matching method for user-friendly image editing, and a heuristic region search method for fast image division. The tools are developed with a high-performance graphic hardware with JPEG image comparession chip to process the huge color image data. The tools are under the field test and experimental resutls show that the database construction time can be redcued in 1/3 compared to manual database construction.

  • PDF

Shortest Path Searching Algorithm for AGV Based on Working Environmental Model (작업환경 모델 기반 AGV의 최단 경로 탐색 알고리즘)

  • Joo, Young-Hoon;Kim, Jong-Seon
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.17 no.5
    • /
    • pp.654-659
    • /
    • 2007
  • This paper proposes the effective method for classifying the working spates and modelling the environments, when complex working environments of AGVS(Automated Guided Vehicle System) ate changed. And, we propose the shortest path searching algorithm using the A* algorithm of graph search method. Also, we propose the methods for finding each AGV's travel time of shortest path. Finally, a simple example is included for visualizing the feasibility of the proposed methods.

Efficiency Evaluation of Harmony Search Algorithm according to Constraint Handling Techniques : Application to Optimal Pipe Size Design Problem (제약조건 처리기법에 따른 하모니써치 알고리즘의 효율성 평가 : 관로 최소비용설계 문제의 적용)

  • Yoo, Do Guen;Lee, Ho Min;Lee, Eui Hoon;Kim, Joong Hoon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.16 no.7
    • /
    • pp.4999-5008
    • /
    • 2015
  • The application of efficient constraint handling technique is fundamental method to find better solutions in engineering optimization problems with constraints. In this research four of constraint handling techniques are used with a meta-heuristic optimization method, harmony search algorithm, and the efficiency of algorithm is evaluated. The sample problem for evaluation of effectiveness is one of the typical discrete problems, optimal pipe size design problem of water distribution system. The result shows the suggested constraint handling technique derives better solutions than classical constraint handling technique with penalty function. Especially, the case of ${\varepsilon}$-constrained method derives solutions with efficiency and stability. This technique is meaningful method for improvement of harmony search algorithm without the need for development of new algorithm. In addition, the applicability of suggested method for large scale engineering optimization problems is verified with application of constraint handling technique to big size problem has over 400 of decision variables.