DOI QR코드

DOI QR Code

Shortest Path Searching Algorithm for AGV Based on Working Environmental Model

작업환경 모델 기반 AGV의 최단 경로 탐색 알고리즘

  • 주영훈 (군산대학교 전자정보공학부) ;
  • 김종선 (군산대학교 전자정보공학부)
  • Published : 2007.10.25

Abstract

This paper proposes the effective method for classifying the working spates and modelling the environments, when complex working environments of AGVS(Automated Guided Vehicle System) ate changed. And, we propose the shortest path searching algorithm using the A* algorithm of graph search method. Also, we propose the methods for finding each AGV's travel time of shortest path. Finally, a simple example is included for visualizing the feasibility of the proposed methods.

본 논문에서는 AGVS(Automated Guided Vehicle System)가 여러 복잡한 작업 환경 또는 작업 환경 변경 시 좀 더 유연하게 운용될 수 있도록 작업환경 내에서 AGVS에 필요한 작업공간요소를 분류하고 이들을 모델링하는 방법을 제안한다. 또한, 그래프 탐색 방법인 A* 알고리즘을 이용하여 AGV의 최단 경로 탐색 알고리즘을 본 논문의 작업환경 요소로서 재 표현한다. 생성된 최단 경로와 본 논문에서 가정한 AGV의 속도 테이블을 이용하여 운행 중인 AGV의 경로 점유 시간 알고리즘을 제안한다. 마지막으로 간단한 시뮬레이션을 통하여 제안한 방법의 적용 가능성을 증명한다.

Keywords

References

  1. Vis, I.F.A., 'Survey of research in the design and control of automated guided vehicle systems', European Journal of Operational Research 170(3), 677-709, 2006, 10 https://doi.org/10.1016/j.ejor.2004.09.020
  2. Le-Anh T. and Koster M.B., 'A review of design and control of automated guided vehicle system'. Eur J Oper Res, Vol. 171, pp. 1-23, 2006, 8 https://doi.org/10.1016/j.ejor.2005.01.036
  3. Qui L, Hsu W.J., Huang S.Y. and Wang H. 'Scheduling and routing algorithms of AGVs: a survey'. Int J Prod Res, Vol. 40, No.3, pp. 745-760, 2002, 10 https://doi.org/10.1080/00207540110091712
  4. Ho T. C., 'A dynamic-zone strategy for vehicle-collision prevention and load balancing in an AGV system with a single-loop guide path'. Comput Ind, Vol. 42, pp. 159-176, 2002, 10 https://doi.org/10.1016/S0166-3615(99)00068-8
  5. Hwang H. and Kim S. H.. 'Development of operation Rrles for automated guided vehicle systems in heterarchical manufacturing system'. Journal of the Korean Institute of Industrial Engineers. Vol. 23, No.2, 1997, 6
  6. Moorthy R.L., Guan W.H., Cheong N.W. and Piaw T.C. 'Cyclic deadlock prediction and avoidance for zone-controlled AGV system'. Int J Prod Econ Vol. 83, pp. 24-30, 2003, 6
  7. Rajotia S, Shanker K, and Batra J. 'A semi-dynamic time window constrained routing strategy in an AGV system'. Int J Prod Res, Vol. 36, No.1, pp. 35 - 50, 2003, 5 https://doi.org/10.1080/002075498193921
  8. George F L., Artificial intelligence structures and strategies for complex problem solving, Addison Wesley Publishers, Fifth edition, 2005
  9. Yves C., 'Heuristics for large constrained vehicle routing problems'. Journal of Heuristics, Vol. 5, pp. 281-303, 1999 https://doi.org/10.1023/A:1009661600931
  10. http://en.wikipedia.org/wiki/A*_search_algorithm
  11. Ardavan A.Vi, Marc G., 'Dual track and segmented single track bidirectional loop guide path layout for AGV systems'. European Journal of Operational Research, 2006
  12. Ayoub Insa Correaa, Andre Langevina and Louis-Martin Rousseaua. 'Scheduling and routing of automated guided vehicles: A hybrid approach', Computers & Operations Research, Vol. 34, pp. 1688-1707, 2007, 10 https://doi.org/10.1016/j.cor.2005.07.004
  13. 최이, 박태진, 류광렬. '가감속을 고려한 교착없는 AGV 주행경로 설정'. 한국해양항만학회지, 제30권 제10호. pp.855-860, 2006, 10 https://doi.org/10.5394/KINPR.2006.30.10.855
  14. Pooya Farahvash, Thomas O. Boucher. 'A multi- agent architecture for control of AGV systems' Robotics and Computer-Integrated Manufacturing, Vol. 20, pp. 473-478, 2004, 8 https://doi.org/10.1016/j.rcim.2004.07.005

Cited by

  1. Optimal Block Transportation Path Planning of Transporters considering the Damaged Path vol.50, pp.5, 2013, https://doi.org/10.3744/SNAK.2013.50.5.298
  2. Localization and Autonomous Navigation Using GPU-based SIFT and Virtual Force for Mobile Robots vol.65, pp.10, 2016, https://doi.org/10.5370/KIEE.2016.65.10.1738