• Title/Summary/Keyword: heteroscedasticity

Search Result 115, Processing Time 0.022 seconds

패널내 추계적 요인들의 공분산 관계에 의한 ML추정

  • 이회경;이진우
    • Proceedings of the Korean Operations and Management Science Society Conference
    • /
    • 1993.04a
    • /
    • pp.424-436
    • /
    • 1993
  • 패널내 추계적 성분들의 공분산 관계(variance-covariance structure)를 이용한 ML 추정법을 항상소득가설(PIH)의 검증에 적용하였다. Hall & Mishkin의 모형을 기초로 분기별 이분산성(heteroscedasticity)을 고려한 모형의 추정결과 전체 소비변동 중 약 11%가 과도민감성에 의한 것으로 나타났다.

  • PDF

Testing Homogeneity for Random Effects in Linear Mixed Model

  • Ahn, Chul H.
    • Communications for Statistical Applications and Methods
    • /
    • v.7 no.2
    • /
    • pp.403-414
    • /
    • 2000
  • A diagnostic tool for testing homogeneity for random effects is proposed in unbalanced linear mixed model based on score statistic. The finite sample behavior of the test statistic is examined using Monte Carlo experiments examine the chi-square approximation of the test statistic under the null hypothesis.

  • PDF

STRICT STATIONARITY AND FUNCTIONAL CENTRAL LIMIT THEOREM FOR ARCH/GRACH MODELS

  • Lee, Oe-Sook;Kim, Ji-Hyun
    • Bulletin of the Korean Mathematical Society
    • /
    • v.38 no.3
    • /
    • pp.495-504
    • /
    • 2001
  • In this paper we consider the (generalized) autoregressive model with conditional heteroscedasticity (ARCH/GARCH models). We willing give conditions under which strict stationarity, ergodicity and the functional central limit theorem hold for the corresponding models.

  • PDF

Estimation of VaR and Expected Shortfall for Stock Returns (주식수익률의 VaR와 ES 추정: GARCH 모형과 GPD를 이용한 방법을 중심으로)

  • Kim, Ji-Hyun;Park, Hwa-Young
    • The Korean Journal of Applied Statistics
    • /
    • v.23 no.4
    • /
    • pp.651-668
    • /
    • 2010
  • Various estimators of two risk measures of a specific financial portfolio, Value-at-Risk and Expected Shortfall, are compared for each case of 1-day and 10-day horizons. We use the Korea Composite Stock Price Index data of 20-year period including the year 2008 of the global financial crisis. Indexes of five foreign stock markets are also used for the empirical comparison study. The estimator considering both the heavy tail of loss distribution and the conditional heteroscedasticity of time series is of main concern, while other standard and new estimators are considered too. We investigate which estimator is best for the Korean stock market and which one shows the best overall performance.

Envisaging Macroeconomics Antecedent Effect on Stock Market Return in India

  • Sivarethinamohan, R;ASAAD, Zeravan Abdulmuhsen;MARANE, Bayar Mohamed Rasheed;Sujatha, S
    • The Journal of Asian Finance, Economics and Business
    • /
    • v.8 no.8
    • /
    • pp.311-324
    • /
    • 2021
  • Investors have increasingly become interested in macroeconomic antecedents in order to better understand the investment environment and estimate the scope of profitable investment in equity markets. This study endeavors to examine the interdependency between the macroeconomic antecedents (international oil price (COP), Domestic gold price (GP), Rupee-dollar exchange rates (ER), Real interest rates (RIR), consumer price indices (CPI)), and the BSE Sensex and Nifty 50 index return. The data is converted into a natural logarithm for keeping it normal as well as for reducing the problem of heteroscedasticity. Monthly time series data from January 1992 to July 2019 is extracted from the Reserve Bank of India database with the application of financial Econometrics. Breusch-Godfrey serial correlation LM test for removal of autocorrelation, Breusch-Pagan-Godfrey test for removal of heteroscedasticity, Cointegration test and VECM test for testing cointegration between macroeconomic factors and market returns,] are employed to fit regression model. The Indian market returns are stable and positive but show intense volatility. When the series is stationary after the first difference, heteroskedasticity and serial correlation are not present. Different forecast accuracy measures point out macroeconomics can forecast future market returns of the Indian stock market. The step-by-step econometric tests show the long-run affiliation among macroeconomic antecedents.

Improvement of Rating Curve Fitting Considering Variance Function with Pseudo-likelihood Estimation (의사우도추정법에 의한 분산함수를 고려한 수위-유량 관계 곡선 산정법 개선)

  • Lee, Woo-Seok;Kim, Sang-Ug;Chung, Eun-Sung;Lee, Kil-Seong
    • Journal of Korea Water Resources Association
    • /
    • v.41 no.8
    • /
    • pp.807-823
    • /
    • 2008
  • This paper presents a technique for estimating discharge rating curve parameters. In typical practical applications, the original non-linear rating curve is transformed into a simple linear regression model by log-transforming the measurement without examining the effect of log transformation. The model of pseudo-likelihood estimation is developed in this study to deal with heteroscedasticity of residuals in the original non-linear model. The parameters of rating curves and variance functions of errors are simultaneously estimated by the pseudo-likelihood estimation(P-LE) method. Simulated annealing, a global optimization technique, is adapted to minimize the log likelihood of the weighted residuals. The P-LE model was then applied to a hypothetical site where stage-discharge data were generated by incorporating various errors. Results of the P-LE model show reduced error values and narrower confidence intervals than those of the common log-transform linear least squares(LT-LR) model. Also, the limit of water levels for segmentation of discharge rating curve is estimated in the process of P-LE using the Heaviside function. Finally, model performance of the conventional log-transformed linear regression and the developed model, P-LE are computed and compared. After statistical simulation, the developed method is then applied to the real data sets from 5 gauge stations in the Geum River basin. It can be suggested that this developed strategy is applied to real sites to successfully determine weights taking into account error distributions from the observed discharge data.

Nonlinear Autoregressive Modeling of Southern Oscillation Index (비선형 자기회귀모형을 이용한 남방진동지수 시계열 분석)

  • Kwon, Hyun-Han;Moon, Young-Il
    • Journal of Korea Water Resources Association
    • /
    • v.39 no.12 s.173
    • /
    • pp.997-1012
    • /
    • 2006
  • We have presented a nonparametric stochastic approach for the SOI(Southern Oscillation Index) series that used nonlinear methodology called Nonlinear AutoRegressive(NAR) based on conditional kernel density function and CAFPE(Corrected Asymptotic Final Prediction Error) lag selection. The fitted linear AR model represents heteroscedasticity, and besides, a BDS(Brock - Dechert - Sheinkman) statistics is rejected. Hence, we applied NAR model to the SOI series. We can identify the lags 1, 2 and 4 are appropriate one, and estimated conditional mean function. There is no autocorrelation of residuals in the Portmanteau Test. However, the null hypothesis of normality and no heteroscedasticity is rejected in the Jarque-Bera Test and ARCH-LM Test, respectively. Moreover, the lag selection for conditional standard deviation function with CAFPE provides lags 3, 8 and 9. As the results of conditional standard deviation analysis, all I.I.D assumptions of the residuals are accepted. Particularly, the BDS statistics is accepted at the 95% and 99% significance level. Finally, we split the SOI set into a sample for estimating themodel and a sample for out-of-sample prediction, that is, we conduct the one-step ahead forecasts for the last 97 values (15%). The NAR model shows a MSEP of 0.5464 that is 7% lower than those of the linear model. Hence, the relevance of the NAR model may be proved in these results, and the nonparametric NAR model is encouraging rather than a linear one to reflect the nonlinearity of SOI series.

Weighted Support Vector Machines for Heteroscedastic Regression

  • Park, Hye-Jung;Hwang, Chang-Ha
    • Journal of the Korean Data and Information Science Society
    • /
    • v.17 no.2
    • /
    • pp.467-474
    • /
    • 2006
  • In this paper we present a weighted support vector machine(SVM) and a weighted least squares support vector machine(LS-SVM) for the prediction in the heteroscedastic regression model. By adding weights to standard SVM and LS-SVM the better fitting ability can be achieved when errors are heteroscedastic. In the numerical studies, we illustrate the prediction performance of the proposed procedure by comparing with the procedure which combines standard SVM and LS-SVM and wild bootstrap for the prediction.

  • PDF

A STUDY ON GARCH(p, q) PROCESS

  • Lee, Oe-Sook
    • Communications of the Korean Mathematical Society
    • /
    • v.18 no.3
    • /
    • pp.541-550
    • /
    • 2003
  • We consider the generalized autoregressive model with conditional heteroscedasticity process(GARCH). It is proved that if (equation omitted) β/sub i/ < 1, then there exists a unique invariant initial distribution for the Markov process emdedding the given GARCH process. Geometric ergodicity, functional central limit theorems, and a law of large numbers are also studied.

Functional central limit theorems for ARCH(∞) models

  • Choi, Seunghee;Lee, Oesook
    • Communications for Statistical Applications and Methods
    • /
    • v.24 no.5
    • /
    • pp.443-455
    • /
    • 2017
  • In this paper, we study ARCH(${\infty}$) models with either geometrically decaying coefficients or hyperbolically decaying coefficients. Most popular autoregressive conditional heteroscedasticity (ARCH)-type models such as various modified generalized ARCH (GARCH) (p, q), fractionally integrated GARCH (FIGARCH), and hyperbolic GARCH (HYGARCH). can be expressed as one of these cases. Sufficient conditions for $L_2$-near-epoch dependent (NED) property to hold are established and the functional central limit theorems for ARCH(${\infty}$) models are proved.