Commun. Korean Math. Soc. 18 (2003), No. 3, pp. 541-550

A STUDY ON GARCH(p,q) PROCESS

OESOOK LEE

ABSTRACT. We consider the generalized autoregressive model with
conditional heteroscedasticity process(GARCH). It is proved that if
Y @io®+3°7_, Bi < 1, then there exists a unique invariant initial
distribution for the Markov process emdedding the given GARCH
process. Geometric ergodicity, functional central limit theorems,
and a law of large numbers are also studied.

1. Introduction

Let n,,n € Z denote a real-valued discrete time stochastic pro-
cess. The generalized autoregressive conditional heteroscedasticity pro-
cess (GARCH(p, q)) is given by Y, = 7,V V,, with V,, = 6 +37 Y2,
+>? . BiVp—i, wherep>0, ¢>0,6>0, ; >0, i=1,2,---,gand
ﬂi >0, ¢:=12,---,p.

For p = 0 the process reduces to the autoregressive conditional het-
eroscedasticity process (ARCH(g)). ARCH model is introduced by Engle
[9] and is extended to GARCH by Bollerslev [5], allowing for more flex-
ible lag structure. In the ARCH(q) process the conditional variance is
specified as a linear function of the past sample variances only, whereas
the GARCH(p, g) process allows lagged conditional variances to enter as
well. ARCH/GARCH model has been proved useful in modelling eco-
nomic phenomena such as foreign exchange rate, interest rate, inflation
rate, etc.

For statistical analysis on these models, stationarity, ergodicity and
various asymptotic properties are of great importance. A number of
theoretical results and their applications for ARCH/GARCH models
can be found in, for example, Engle [9], Weiss [27], Bera and Higgins
[3], Guégan and Diebolt [11], Lu [19], Borkovec [6] for ARCH models
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and Bollerslev [5], Nelson [21], Bougerol and Picard [7], Li and Li [16],
Rudolph [23], Ling [17], Lee and Kim [15] for GARCH processes.

Bollerslev [5] shows that ) 7 ;a; + > ¢, 3 < 1 is a necessary and
sufficient condition for second order stationarity of GARCH(p, ¢) model.
Nelson [21] gave sufficient conditions for strict stationarity and ergod-
icity of GARCH(1,1) model. Bougerol and Picard [7] proved that the
negative Lyapounov exponent of some random matrices is necessary and
sufficient for strict stationarity and ergodicity of GARCH(p, ¢) process.
Central limit theorems and the law of large numbers for GARCH(p, q)
process are considered in Rudolph [23].

Our aim in this paper is to give sufficient conditions for strict sta-
tionarity, geometric ergodicity, a law of large numbers, and functional
central limit theorems for the process. To do this, we first rephrase
the given process as a properly defined associated Markov process, and
study the Markov process and then derive the desired results from that
of the Markov chain. (see, e.g., Tjgstheim [24], Tong [25], Lee [14]).

A short overview of the paper is as follows: in Section 2, we define the
corresponding Markov chain to GARCH model and prove the existence
of strict stationary process. Geometric ergodicity is given in Section 3.
Section 4 presents a functional central limit theorem.

General terminologies and relevant results in Markov chain theory
are referred to Meyn and Tweedie [20].

2. Strict stationarity

A sequence of univariate stochastic process Y,, n € Z is said to be a
GARCHY(p, q) process if it satisfies the equation Y;, = n,/V,, with

Y4 q
(2.1) Va=0+) BiVai+ Y oV, nek,
=1 =1

wherea; >0, 1=1,2,--- ,gand 3; >0, ¢t =1,2,---,p, Ny, n € Z are
independent and identically distributed (i.i.d.) random variables with
mean E(n,) = 0 and variance o2, Assume that § >0, p > 0 and ¢ > 0.
If p = 0, then the process is said to be an ARCH(q) process.

There are various ways to represent the GARCH process as a Markov
chain (see, e.g., Bougerol and Picard [7], Ling [17], Liu et al. [18]).
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For GARCH(p, q) process given in (2.1), define a (p+g—1) x (p+g—1)
matrix A, by

_ I-1, O, 0, 0
(22) D=1 E, 0 0 o
0, 0, I, O
where

Tn = (ﬁl + 0177721,52, e 7ﬂp—l) € Rp_la
£'n = (773“0,0"“ 70) € Rp—l’
a=(ag,az, - ,aq_l) € Rq_2,
and I,—; and I,_o are the identity matrices of size p — 1 and ¢ — 2,
respectively. Then {A,} are i.i.d. random matrices. We will always
assume that p,q > 2, by adding some «; or [; equal to zero if needed.
Now let
B =(6,0,0,---,0)" € RPT971,
and
(23) Xn = (Vn+17 t 7Vn—p+2a Yn2, e aYn?—q—{—Z)t'
Then Y, is a solution of (2.1) if and only if X,, is a solution of
Xni1=Ap1Xn+B, nel

Since Ay, k > n + 1 are independent of X,,, {X, : n > 0} with
arbitrarily specified random vector Xy independent of {7, : n > 1} can
be regarded as a Markov chain with its n-step transition probability
function, say, p™ (z, dy).

A Markov process with n-step transition probability function p™ (z,
dy) is said to be p-irreducible with respect to a nontrivial o- finite mea-
sure p if >, .5 2-"p(M)(z, A) > 0 for every z and every A with
w(A) > 0. N

Let |-|| denote any norm on RPT9~1 and define a subordinated matrix
norm on the set of (p+ ¢ —1) x (p+ g — 1) matrices by
G|l

]

Let p(G) be the spectral radius of the matrix G, i.e.

|G|l = sup{ cz e RPHYIL 2 £ 0},

p(G) = max{|A| : ) is an eigenvalue of G}.
For matrices A = (a;;) and B = (b;;), A > B means a;; > b;; for any
i\ j.
Following lemma is due to Kesten and Spitzer [12].
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LEMMA 2.1. Let By, Bs,--- be a sequence of i.i.d. nonnegative ma-
trices. Then

1
limﬁlog |B1Bs--- B,|| < log p(E(B1)) a.s.

LEMMA 2.2. Let A; be the matrix defined in (2.2). Then p(E(A1)) <
1 if and only if Y0 _; as0? + 37 B < 1.

PROOF. This result can be derived from the fact that for a; > 0, (i =

1,---,n), all roots of the equation =™ — a1z ' — ... —a, = 0 lie inside
the unit circle if and only if a; + -+ a, < 1.

THEOREM 2.1. Suppose that 3¢_; a;0% + 7, 8; < 1. Then the
following holds.

(1) p™(z,dy) converges weakly to a unique invariant probability
n(dy) and Markov chain {X, : n > 0} in (2.3) with Xo ~ 7 is strict
stationary and ergodic. Here X ~ 7 implies that the distribution of Xy
is .

(2) For every z,

10y Se) — [ f)ndn), as

for all bounded continuous real-valued functions on RPT971.

Proor. (1) First note that {A,} is a sequence of i.i.d. random
matrices whose entries are all nonnegative. From assumptions and the
above lemmas, there exist m > 0 and 7 > 0 such that |[Am -+ A1|| <7 <
1 a.s. Let {X,(z): n > 0} denote {X, : » > 0} in (2.3) if Xo ==,z €

R:f'q_l where R’fq_l ={x=(x1,  ,Tptq—1)|lz:i > 0,1 < i < pt+g-1}.
Then we have that
(2.4) [ Xnm(z) = Xem @) < ™[z — yll,

from which together with E(||zo—A120]]) < oo for some o in RS9, we
obtain the weak convergence of p(™) (z,dy) to some probability measure,
say, m(dy). Actually, 7 is the distribution of lims .. Xn(z) which is
independent of z and since A, is ii.d., X, with Xg ~ 7 is a strictly
stationary and ergodic Markov chain. (see, for example, Elton [8], Lee
[13], Benda [2] etc.).

(2) Since X, with Xy ~ 7 is stationary and ergodic, by ergodic
theorem, we have

1/n> " f(Xn) = E[f(Xo)), a.s.
k=0
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Also ||An - Az — Ap - A1 Xo|| < ||An--- A1l|lz — Xo|| — O a.s. as
n — 00, and the conclusion follows.

3. Geometric ergodicity

Recall that a p— irreducible Markov process is said to be geometri-
cally (Harris) ergodic if there exists a probability measure 7 and p < 1
such that

(3.1) p~"sup |p™(z, B) — n(B)] > 0 asn — oo.
B

When the given process has an irreducible Markovian structure, the
following result due to Tweedie [26] gives a sufficient condition for geo-
metric ergodicity of the process.

THEOREM 3.1. Suppose that {X,} is irreducible aperiodic Markov
chain with state space R:frq_l. If there exist, for some compact set C,

a nonnegative measurable function v on R‘fq_l, ¥y>0and0<r<1
satisfying

(3.2) Elv(Xpi)| Xn =2) < rv(z) —y, z€C°
and
(3.3) sup E[v(Xp41)|Xn = 2] < 00,

zeC

then {X,} is geometrically ergodic.

THEOREM 3.2. Suppose that {X, : n > 0} in (2.3) is ¢-irreducible
aperiodic. If > 7_, a;0? + 3P B < 1, {X,.} is geometrically ergodic.

Proor. To obtain the geometric ergodicity of {X,}, it remains to
find the proper test function v : R’fq—l — R4 under which the assump-
tions of Theorem 3.1 hold. The basic idea to define the test function v
given later is similar to that of Ling [17].

Let A = E(A;) and I be the identity matrix. Since p(A4) < 1, I — A?
is invertible and (I — A*)~! = T+ 5°%° | (A*)". Note that every entry of
A is nonnegative. Let = (z1,Z2, -+ ,Zptq—1)’ > 0 if and only if z; > 0
foralli=1,2,--- ,p+q—1. Now choose L = (I1,l2, -+ ,lp1q-1)t > 0 s0
that M = (mq,ma, -+ ,mpyq-1)t = (I — A)71L > 0, and then define a
function v : R’_’,_'H’_1 — Ry by

(3.4) v(z) =1+ M.
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Then we have that
E[v(Xns1) | Xn=2] = E[l+(Apniz+ B)'M]
= 1+ z'A'M + B'M
= 1+2'M—2'(I - AYM + B'M

(I — AYM :
Let [ := min{ly,la, - ,lp+q—1} and m := max{mi,ma, -+ ,Mpiq_1}

Then
1>mt(I—At)M: 'L S [y =z
1+2tM 1+2tM ~ 14+md x;
Since M — L = A*M >0, m > l. Choose any r and k so that 0 < r <
L <landk> = ThenforanymgéCk:{:ceR’fq_lIZmiSk},

l—rm*
Ew(Xn+1) | Xn = 2] <v(2)(1 —7) + B*M.

Since v(z) is increasing as Y z; is increasing, for any v > 0, we may
choose ', 0 < 7/ <r < 1, and k' > k so that for any = € C},,

(35) Ew(Xpi1) | Xn=2] <v(@)(1 —7)+ B'M <v(z)(1—7'") — 7.
Clearly

(3.6) sup E[v(Xnt+1)|Xn = 2] < c0.
:L‘Eck/

By (3.5) and (3.6), the assumptions of Theorem 3.1 hold and geometric
ergodicity of {Xy,} follows.

REMARK. Unfortunately, it is very awkward problem to show the
irreducibility of GARCH(p, ¢) model with ¢ > 1.

4. Functional central limit theorems

In this section, we consider the limiting distribution of the following
stochastic processes: For each positive integer n, fixed f € L2(Rﬁ+q_1,
), define

[nt]
(1) Fal®) = S=3- (000 = P+ ¢~ D Kgsr) =P, 20
k=0

Here f = [ fdm. We say that the functional central limit theorem holds
for f € L*(R?T9™", m) if the sequence of stochastic process Fy(t) in (4.1)
converges in distribution to a Brownian motion.
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A real-valued function f on R’fq—l is said to be a Lipschitzian func-
tion if | f(z)—f(y)| < K||z—yl||, for some K > 0 and forall z,y € RT"q_l.
Under the assumption Y% ; a;0% + Y0, 8; < 1, [2?n(dz) < oo holds
and hence every Lipschitzian function is in L%(r).

Let || - ||2 denote the Lo norm on L2(r).

THEOREM 4.1. Suppose Y ¢ ;02 + 3% B; < 1. (1) If the dis-
tribution of Xg is m, every Lipschitzian function f holds the functional
central limit theorem. (2) If Xo =, z € R’fq_l, every Lipschitzian
function f holds the functional central limit theorem.

PROOF. (1) Let P be the transition operator on L?(r) such that

(Pf)(z) = / f@p(z,dy), | € L¥r).

From inequality (2.4) and [ z2dm < oo, we have

S IP = Dl
n=0

1/2
[ Blf(Xa(2)) = f(Xn(y)) |7 (dy)*n(dz)
(1Y ety
S KkimiE

n=0

A [ [l srtaemian))”
(42) < oo

From this together with Lemma 3.3 and Theorem 3.1 in Bhattacharya
and Lee [4], the conclusion follows.

(2) Let F, () and FZ(-) be the processes defined by (4.1) with Xo ~ 7
and X = z, respectively. For Lipschitzian function f, we have that

IN

IA

Bl IF0 - B0 < KoY BlXelo) - Xl

(4.3) — 0 as n — oo.
Therefore FZ(t) and F,(t) have the same limit.

REMARK. Benda [2] show that if E||A;]|2 < 1, FCLT holds for every
Lipschitzian f. In Lee and Kim [15], it is proved that |E(A{A1)] < 1
is sufficient under which FCLT holds for every Lipschitzian function.
Note that | E(A{A1)]| < ElA1l* and p(E(A1)) < [|E(A)] < EjlAll,
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by Jensen’s inequality, and (E||4;]|)?> < E|A4;]|*> by Cauchy-Schwarz
inequality.

Recall that geometrically ergodic Markov process is absolutely regular
and absolute regularity implies the strong mixing. From this fact, limit
theorems for X,, can be obtained by applying various limit theorems
for absolutely regular process and/or strong mixing process (see, Pham
[22)).

If we assume that X, is irreducible and aperiodic in addition to the
assumption Y & ; ;0% + >-P_ Bi < 1, then we identify a broad class of
functions f for which FCLT holds.

THEOREM 4.2. Suppose the assumptions in Theorem 3.2 hold. Then
every function f with f? < wg(zx) holds the functional central limit
theorem, where vo(z) = v(z)+ ¢ for some constant ¢ > 0 and v(z) given
in (3.4). In particular, every bounded measurable function f holds the
functional central limit theorem.

PRrROOF. From (3.5) and (3.6), we can easily obtain that
(4.4) E[v(Xpn41)| Xn = 2] < ru(z) + blc,

for some constants b, 0 < r < 1 and compact set C. Here I is the
indicator function of C. Then Theorem 4.1 in Glynn and Meyn [10]
ensures that if f2 < vg, then f is in the range of P — I where P is the
transition operator on L?(7) and I is an identity operator and hence the
functional central limit theorem holds for f. If f is bounded measurable
with | f| < ¢o for some ¢y < 00, then we have f2 < vp, by taking ¢ = c3
in vg(x), and therefore the functional central limit theorem holds for

such f.
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