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Abstract
In this paper, we study ARCH(∞) models with either geometrically decaying coefficients or hyperbolically

decaying coefficients. Most popular autoregressive conditional heteroscedasticity (ARCH)-type models such as
various modified generalized ARCH (GARCH) (p, q), fractionally integrated GARCH (FIGARCH), and hyper-
bolic GARCH (HYGARCH). can be expressed as one of these cases. Sufficient conditions for L2-near-epoch
dependent (NED) property to hold are established and the functional central limit theorems for ARCH(∞) mod-
els are proved.
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1. Introduction

Introduced by the seminal work of Engle (1982) and Bollerslev (1986), autoregressive conditional
heteroscedasticity (ARCH)-type processes are widely used for modelling dynamics in different fields
such as in econometric studies. A number of modifications of the classical generalized ARCH
(GARCH) model such as various modified-GARCH(p, q) models, integrated GARCH (IGARCH),
fractionally IGARCH (FIGARCH), hyperbolic GARCH (HYGARCH), and fractionally integrated
asymmetric power ARCH (FIAPARCH) models were proposed to account for long memory prop-
erty, asymmetry, leverage effect, and other stylized facts. ARCH(∞) models was first introduced by
Robinson (1991) in the context of testing for strong serial correlation. It can often be helpful to view
a GARCH(p, q) process as an ARCH(∞) processes. In particular, from the ARCH(∞) representation
we can easily read off the conditional variance given its infinite past. All of these aforementioned
models can be represented as ARCH(∞) models. When we consider a time series model as a data
generating process, one of the important properties to show is the (functional) central limit theorem
(CLT). Functional central limit theorem (FCLT) is applied for statistical inference in time series to
establish the asymptotics of various statistics concerned. For example, the FCLT has been employed
in the theory of detecting structural breaks in GARCH-type models. Probabilistic and statistical prop-
erties of ARCH(∞) models have been studied by many authors (e.g., Davidson, 2004; Giraitis et al.,
2000; Kazakevic̆ius and Leipus, 2002; Zaffaroni, 2004) and the references therein.

A process yt is said to obey the FCLT if

Yn(ξ) = σ−1
n

[nξ]∑
t=1

(yt − E(yt)), 0 ≤ ξ ≤ 1,
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converges weakly to standard Brownian motion, where σ2
n = Var(

∑n
t=1 yt). If ξ = 1,then this con-

vergence implies the CLT. There are numerous literatures considering the CLT and FCLT for various
GARCH family models (Berkes et al., 2008; Billingsley, 1968; Davidson, 2002; De Jong and David-
son, 2000; Herrndorf, 1984; Lee, 2014a, 2014b).

This paper is to find some sufficient conditions under which the FCLT holds for the partial sums
processes of the given ARCH(∞) models. The typical approach to obtaining the FCLT for time series
models is to show that a specific dependence property such as various mixing conditions, Lp-NED
(near-epoch dependent), association or θ,L or ψ-weak dependence holds. In order to prove such
dependence properties, rather restrictive conditions such as distributional assumptions on errors and
higher order moment are required (Dedecker et al., 2007; Doukhan and Wintenberger, 2007).

Our proof is based on the L2-NED condition among various dependence conditions. The proofs,
in part, rely on results in Davidson (2004) and Giraitis et al. (2000).

Definition 1. yt is said to be L2-NED on {et} of size −λ0 if∥∥∥yt − Et+m
t−m(yt)

∥∥∥
2 ≤ dtν(m),

where dt is a sequence of positive constants and ν(m) = O(m−λ) for λ > λ0. If ν(m) = O(e−δm)
for some δ > 0, we say that the process is geometrically L2-NED. Here we define Et+m

t−m(yt) =
E(yt |σ(et−m, . . . , et−1, et, et+1, . . . , et+m)).

Theorem 1. (Davidson, 2002) Suppose that the following Assumptions (1)–(3) hold: (1) yt is L2-
NED of size −1/2 on the underlying i.i.d. process {et}. (2) supt E|yt − E(yt)|r < ∞ for some r ≥ 2. (3)
σ2

n/n→ σ2 > 0 as n→ ∞. Then the FCLT holds for yt.

2. Functional central limit theorem for ARCH(∞) model

In this section, we consider a nonnegative coefficients ARCH(∞) model defined as follows.

ut = σtet, (2.1)

and

σ2
t = ω +

∞∑
i=1

θiu2
t−i, (2.2)

where ω > 0, θi ≥ 0 for all i ≥ 1 are constants and {et} is a sequence of independent and identically
distributed random variables with mean 0 and variance 1.

Repeated substitution of the equations (2.1) and (2.2) leads to, for given m,

σ2
t = ω

1 + m∑
p=1

∞∑
j1, j2,..., jp=1

θ j1θ j2 · · · θ jp e2
t− j1 e2

t− j1− j2 · · · e
2
t− j1− j2−···− jp


+

∞∑
j1, j2,..., jm+1=1

θ j1 · · · θ jm+1 e2
t− j1 · · · e

2
t− j1− j2−···− jm+1

σ2
t− j1− j2−···− jm+1

. (2.3)

For notational simplicity, we let S =
∑∞

i=1 θi, µn = E(|et |n), and Mn = E(σn
t ) for n = 1, 2, . . . .

For a process yt, define Et+m
t−m(yt) = E(yt |F t+m

t−m ), where F t
s = σ(es, . . . , et) is a sigma field generated by

{e j, s ≤ j ≤ t}.
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We first write the lemma due to Giraitis et al. (2000) and Zaffaroni (2004) in which the stationarity
and finite moment condition of the process is obtained.

Lemma 1. Assume S < 1. Then σ2
t given by

σ2
t = ω

1 + ∞∑
p=1

∞∑
j1, j2,..., jp=1

θ j1θ j2 · · · θ jp e2
t− j1 e2

t− j1− j2 · · · e
2
t− j1− j2−···− jp

 (2.4)

is the unique nonanticipative strictly stationary solution to (2.1) and (2.2) with finite first moment
E(σ2

t ). If, in addition, µ1/2
4 S < 1, then (2.4) is also unique weakly stationary solution to (2.1) and

(2.2).

The following lemma will be used to derive some sufficient conditions for L2-NED property and
then to prove the FCLT for the process ut.

Lemma 2. Consider the processes ut and σ2
t given by (2.1) and (2.2). Then we obtain that∥∥∥ut − Et+m

t−m(ut)
∥∥∥2

2 ≤ E
∣∣∣∣σ2

t − Et+m
t−m

(
σ2

t

)∣∣∣∣ .
Proof: We have that ∥∥∥ut − Et+m

t−m(ut)
∥∥∥2

2 =
∥∥∥σt − Et+m

t−m(σt)
∥∥∥2

2

≤
∥∥∥∥∥(σ2

t

) 1
2 −

(
Et+m

t−m

(
σ2

t

)) 1
2

∥∥∥∥∥2

2

≤ E
∣∣∣∣σ2

t − Et+m
t−m

(
σ2

t

)∣∣∣∣ . (2.5)

The first inequality in (2.5) follows from the relation: ∥Y−E(Y |X)∥2 ≤ ∥Y−g(X)∥2 for any measurable
function g. For the second inequality in (2.5), we apply the relation (

√
a−
√

b)2 ≤ |a−b| (a > 0, b > 0).
�

Next, we define for some m ≥ p ≥ 1,

Tp =

∞∑
j1=1

· · ·
∞∑

jp=1

I{ j1+···+ jp>m}( j1, j2, . . . , jp)θ j1θ j2 · · · θ jp , (2.6)

where IA(·) is the indicator function of a set A. Then combining (2.3) and (2.6), we can easily show
that (Davidson, 2004, p.26)

E
∣∣∣∣σ2

t − Et+m
t−m

(
σ2

t

)∣∣∣∣ ≤ 2ω
m∑

p=1

Tp + 2M2S m+1, (2.7)

and ∥∥∥∥σ2
t − Et+m

t−m

(
σ2

t

)∥∥∥∥
2
≤ 2ω

m∑
p=1

Tpµ
p
2
4 + 2M

1
2
4 µ

m+1
2

4 S m+1. (2.8)
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Now, we first consider the processes which have hyperbolically decaying lag coefficients.

(A1) 0 ≤ θ j ≤ C j−1−δ for j ≥ 1,C > 0, δ > 0, and S < 1.

Theorem 2.

(1-1) If the Assumption (A1) holds, then ut given by (2.1) and (2.2) is L2-NED on {et}, of size −λ/2,
with δ > λ > 0.

(1-2) If the assumption (A1) and µ1/2
4 S < 1 hold, then ut, u2

t , and σ2
t are L2-NED on {et} of size −λ,

with δ > λ > 0.

Proof: After simple calculation, we derive that

T2 ≤ 2

 ∞∑
j=[m/p]+1

θ j

 S

and then use mathematical induction to obtain that

Tp ≤
 ∞∑

j=[m/p]+1

θ j

 S p−1 + S
∞∑

j1=1

· · ·
∞∑

jp−1=1

I{ j1+···+ jp−1>(p−1)m/p}( j1, . . . , jp−1)θ j1 · · · θ jp−1

=

 ∞∑
j=[m/p]+1

θ j

 S p−1 + (p − 1)

 ∞∑
j=[m/p]+1

θ j

 S p−1

= p

 ∞∑
j=[m/p]+1

θ j

 S p−1, (2.9)

where [x] denotes the largest integer which is less than or equal to x.
Moreover, if the Assumption (A1) holds, then

∞∑
j=[m/p]+1

θ j ≤ C
∫ ∞

m
p

x−1−δdx =
(C
δ

)
m−δpδ. (2.10)

Combining the Assumption (A1), the equations (2.9) and (2.10) yields that

Tp ≤ O
(
m−δpδ+1S p−1

)
, p ≥ 1. (2.11)

Proof of Theorem 2(1-1): Note that
∞∑

p=1

pδ+1S p−1 ≤ 1
S

∫ ∞

0
xδ+1S xdx =

Γ(δ + 2)
S (− log S )δ+2 < ∞. (2.12)

Then the equations (2.7), (2.11), and (2.12) give that

E
∣∣∣∣σ2

t − Et+m
t−m

(
σ2

t

)∣∣∣∣ ≤ 2ω
m∑

p=1

Tp + 2M2S m+1

= O

m−δ m∑
p=1

pδ+1S p−1


= O

(
m−δ

)
. (2.13)
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Use Lemma 2 and the equation (2.13) to obtain that∥∥∥ut − Et+m
t−m(ut)

∥∥∥
2 ≤ O

(
m−

δ
2

)
,

and the conclusion follows.

Proof of Theorem 2(1-2): Combine, similarly the equations (2.8), (2.11), and (2.12) to have that∥∥∥∥σ2
t − Et+m

t−m

(
σ2

t

)∥∥∥∥
2
= O

m−δ m∑
p=1

pδ+1
(
µ

1
2
4 S

)p−1
 = O

(
m−δ

)
, (2.14)

since µ1/2
4 S < 1. Also, we have∥∥∥∥u2

t − Et+m
t−m

(
u2

t

)∥∥∥∥
2
= µ

1
2
4

∥∥∥∥σ2
t − Et+m

t−m

(
σ2

t

)∥∥∥∥
2
. (2.15)

Hence u2
t and σ2

t hold the L2-NED property of size −λ with δ > λ > 0.
On the other hand, using the inequalities σ2

t ≥ ω, Et+m
t−mσ

2
t ≥ ω, and |

√
a −
√

b| ≤ |a − b| if a, b ≥ 1
yields that ∣∣∣∣∣σt −

(
Et+m

t−m

(
σ2

t

)) 1
2

∣∣∣∣∣ ≤ ω− 1
2

∣∣∣∣σ2
t − Et+m

t−m

(
σ2

t

)∣∣∣∣ . (2.16)

Then from (2.16) and the first inequality in (2.5), we obtain that∥∥∥ut − Et+m
t−m(ut)

∥∥∥
2 ≤

∥∥∥∥∥σt −
(
Et+m

t−m

(
σ2

t

)) 1
2

∥∥∥∥∥
2
≤ ω− 1

2

∥∥∥∥σ2
t − Et+m

t−m

(
σ2

t

)∥∥∥∥
2
. (2.17)

Therefore, L2-NED property of ut follows from (2.14) and (2.17). �

Next, consider the case where the process has geometrically decaying coefficients. We make the
Assumption (A2):

(A2) 0 ≤ θ j ≤ Cr j, for j ≥ 1,C > 0, 0 < r < 1, and S < 1.

Theorem 3.

(2-1) If the Assumption (A2) holds, then ut is L2-NED on {et} of size −1/2.

(2-2) If the Assumption (A2) and µ1/2
4 S < 1 hold, then u2

t and σ2
t are L2-NED on {et} of size −1/2.

(2-3) If the Assumption (A2) and 0 < rC < 1 hold, then ut is geometrically L2-NED on {et}.

(2-4) If the Assumption (A2), µ1/2
4 S < 1, 0 < rC < 1, and µ1/2

4 rC < 1 hold, then u2
t and σ2

t are
geometrically L2-NED on {et}.

Proof: Proof of Theorem 3(2-1): From the Assumption (A2) and the equation (2.9), we have

Tp ≤ p

 ∞∑
j=[m/p]+1

θ j

 S p−1

≤ Cp

 ∞∑
j=[m/p]+1

r j

 S p−1

≤ Kr
m
p pS p. (2.18)
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Throughout this paper, K denotes a generic constant. There is no loss of generality in setting r > S .
Choose 0 < ϵ < 1. Then we have that

m∑
p=1

Tp ≤
m∑

p=1

Kr
(

m
p

)
+ϵp pS (1−ϵ)p.

Define f (p) = (m/p) + ϵp (1 ≤ p ≤ m). Then the minimum value of f (p) = 2
√
ϵ
√

m if m > 1/ϵ.
Thus we have that, for sufficiently large m,

E
∣∣∣∣σ2

t − Et+m
t−m

(
σ2

t

)∣∣∣∣ ≤ 2ω
m∑

p=1

Tp + 2M2S m+1

≤ Kr2
√
ϵ
√

m
m∑

p=1

pS (1−ϵ)p + 2M2S m+1

≤ K
(
(r′)

√
m ∨ S m

)
≤ K

(
r′ ∨ S

)√m . (2.19)

Therefore, (
E

∣∣∣∣σ2
t − Et+m

t−m

(
σ2

t

)∣∣∣∣) 1
2 ≤ K

(
r′ ∨ S

) √m
2

= O
(
m−

1
2−η

)
, (2.20)

for some η > 0 where r′ = r2
√
ϵ < 1 and a ∨ b = max{a, b}. The equality in the equation (2.20) is

obtained from (1/2)
√

m log(r′ ∨ S ) ≤ (−1/2− η) log m for large enough m. Combining Lemma 2 and
the equation (2.20) yields the conclusion.

Proof of Theorem 3(2-2): Let S 0 = µ
1/2
4 S < 1. Without loss of generality we assume that r > S 0 and

choose 0 < ϵ < 1. Then from (2.8) and (2.18)∥∥∥∥σ2
t − Et+m

t−m

(
σ2

t

)∥∥∥∥
2
≤ K

m∑
p=1

r
m
p pS p

0 + 2M
1
2
4 S m+1

0

≤ K
m∑

p=1

r
m
p +ϵp pS (1−ϵ)p

0 + 2M
1
2
4 S m+1

0 .

Then by the same method used to prove the equation (2.19) and (2.20), we obtain that∥∥∥∥σ2
t − Et+m

t−m

(
σ2

t

)∥∥∥∥
2
≤ K

(
r′ ∨ S 0

)√m
= O

(
m−

1
2−η

)
, (2.21)

for some η > 0 and sufficiently large m. From (2.15) and (2.21), u2
t and σ2

t are L2-NED of size −1/2.

Proof of Theorem 3(2-3): The baseline of the proof of Theorem 3(2-3) is the same as that of Theorem
2(a) in Davidson (2004). Choose ϵ > 0 such that S̃ =

∑∞
j=1 θ

1−ϵ
j < 1. Then

Tp =

∞∑
j1=1

· · ·
∞∑

jp=1

I{ j1+···+ jp>m}( j1, . . . , jp)|θ j1 · · · θ jp |ϵ |θ j1 · · · θ jp |1−ϵ

≤ CϵprϵmS̃ p. (2.22)
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By using (2.7) and (2.22), we have that

E
∣∣∣∣σ2

t − Et+m
t−m

(
σ2

t

)∣∣∣∣ ≤ 2ωrϵm
m∑

p=1

CϵpS̃ p + 2M2S m+1

≤ KrϵmCϵm
(
C−ϵm − S̃ m

)
+ 2M2S m+1

= O (αm)

= O
(
e−ρm)

, (2.23)

where α = rϵ ∨ (rC)ϵ ∨ S < 1 and ρ = − logα > 0. To prove the first equality in (2.23), note that

rϵmCϵm
(
C−ϵm − S̃ m

)
≤

{
2rϵm, if C−ϵ ≥ S̃ ,
2(rC)ϵm, if C−ϵ < S̃ .

Then apply Lemma 2 to get ∥ut − Et+m
t−m(ut)∥2 ≤ O(e−(1/2)ρm), which implies that ut holds the

geometric L2-NED property.

Proof of Theorem 3(2-4): Choose ϵ > 0 such that S̃ =
∑∞

j=1 θ
1−ϵ
j < 1, and µ(1−ϵ)/2

4 S̃ < 1. Now use the
equations (2.8) and (2.22) to have that∥∥∥∥σ2

t − Et+m
t−m

(
σ2

t

)∥∥∥∥
2
≤ Krϵm

(
1 −

(
Cϵµ

1
2
4 S̃

)m)
+ 2M

1
2
4

(
µ

1
2
4 S

)m+1

= O (βm)

= O
(
e−ρ

∗m
)
, (2.24)

where β = rϵ ∨ (µ1/2
4 rC)ϵ ∨µ1/2

4 S < 1 and ρ∗ = − log β > 0. Combine the equation (2.15) and (2.24) to
obtain the geometric L2-NED property of u2

t and σ2
t . Note that the first equality in (2.24) is obtained

from the following inequality:

rϵm
(
1 −

(
Cϵµ

1
2
4 S̃

)m)
≤


2rϵm, if

(
Cµ

1
2
4

)−ϵ
≥ µ

1−ϵ
2

4 S̃ ,

2
(
rCµ

1
2
4

)ϵm
, if

(
Cµ

1
2
4

)−ϵ
< µ

1−ϵ
2

4 S̃ .

�

Remark 1. Compared to the results in Davidson (2004), Theorems 2 and 3 weaken sufficient con-
ditions for L2-NED property of ut, u2

t , and σ2
t .

Theorem 4. If one of the following conditions (a)–(c) is satisfied then the FCLT holds for the process
ut given by (2.1) and (2.2):

(a) the Assumption (A1) with δ > 1,

(b) the Assumption (A1) with δ > 1/2 and µ1/2
4 S < 1,

(c) the Assumption (A2).

Proof: Lemma 1 ensures that S < 1 implies the strict stationarity ofσ2
t with E(σ2

t ) < ∞. In Theorems
2 and 3, it is shown that ut is either L2-NED of size −1/2 or geometrically L2-NED under one of the
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above assumptions (a)–(c). Also, σ2
n = Var(

∑n
t=1 ut) = nE(σ2

t ). Apply Theorem 1 to obtain the FCLT
for ut. �

Theorem 5.

(3-1) If the Assumption (A1) with δ > 1/2 and µ1/2
4 S < 1, then the FCLT holds for u2

t and σ2
t .

(3-2) If the Assumption (A2) and µ1/2
4 S < 1, then the FCLT holds for u2

t and σ2
t .

Proof: Lemma 1 shows that the condition µ1/2
4 S < 1 is sufficient for the existence of E(u4

t ) and the
existence of weakly stationary solution of the process u2

t . Moreover, by Proposition 3.1 in Giraitis et
al. (2000), µ1/2

4 S < 1 implies that

∞∑
t=1

Cov
(
u2

t , u
2
0

)
< ∞. (2.25)

Also, from weak stationarity of u2
t ,

Var

 n∑
t=1

u2
t

 = n∑
t=1

Var
(
u2

t

)
+ 2

n∑
t=1

(n − t)Cov
(
u2

t , u
2
0

)
. (2.26)

From (2.25) and (2.26), as n→ ∞,

1
n

Var

 n∑
t=1

u2
t

 −→ Var
(
u2

0

)
+ 2

∞∑
t=1

Cov
(
u2

t , u
2
0

)
< ∞. (2.27)

Proof of Theorem 5(3-1): Theorem 2(1-2) shows that under the assumptions, u2
t and σ2

t are L2-NED
of size −1/2. Therefore, the FCLT for u2

t and σ2
t follows from (2.14), (2.15), (2.27) and Theorem 1.

Proof of Theorem 5(3-2): In Theorem 3(2-2), it is shown that under the given assumptions, u2
t and σ2

t
are L2-NED of size −1/2. Then the FCLT for u2

t and σ2
t are obtained from (2.15), (2.21), (2.27), and

Theorem 1. �

Remark 2. Assume µ1/2
4 S < 1. It is known that if the exponential decay of the coefficient θ j in (2.2)

implies the exponential decay of the covariance function of the sequence {u2
t }. On the other hand, if

θ j ≤ C j−1−δ, δ > 0, then the hyperbolic decay of the covariance function of u2
t is proved, that is, there

exists K > 0 such that for t ≥ 1, Cov(u2
t , u

2
0) ≤ Kt−1−δ (Giraitis et al., 2000; Zaffaroni, 2004).

Example 1. Under proper constraints, conditional variance σ2
t of various GARCH-type process

can be rewritten as an ARCH(∞) model. The FCLT for various GARCH-type model including aug-
mented GARCH, asymmetric power GARCH (APGARCH), vector GARCH (VGARCH), exponen-
tial GARCH (EGARCH) as well as the classical GARCH model is studied in Lee (2014a). For the
classical GARCH model

ut = σtet, σ2
t = ω +

p∑
i=1

αiu2
t−i +

q∑
j=1

β jσ
2
t− j, (ω > 0, αi ≥ 0, β j ≥ 0),
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recall that if
∑
αi +

∑
β j < 1, then the process satisfies the Assumption (A2) and S < 1 . Thus,

Theorem 3(2-3) ensures that
∑
αi +

∑
β j < 1 is sufficient for ut to be L2-NED of size −1/2 and the

FCLT holds for ut. Lee (2014a) shows that
∑ ∥αie2

t + βi∥2 < 1 is sufficient for the FCLT for u2
t and

σ2
t . Note that µ4 ≥ 1 and

∑ ∥αie2
t + βi∥2 ≤

∑
(µ1/2

4 αi + βi) < 1 if µ1/2
4 S < 1.

Example 2. Results obtained in this section can be easily extended to a general ARCH(∞) model.
Consider the following process

ut = σtet, σd
t = ω +

∞∑
j=1

θ j|ut− j|d (d > 0, ω > 0, θ j ≥ 0). (2.28)

If E|e0|2d < ∞ and (E|e0|2d)1/2 ∑
θ j < 1, then a unique strictly stationary and weak stationary so-

lution to (2.28) with E|ut |2d < ∞ exists. If θ j in (2.28) satisfies the condition (A1) (or (A2)) and
(E|e0|2d)1/2 ∑

θ j < 1, then the FCLT holds for |ut |d and σd
t . If θ j satisfies the condition (A2), then the

FCLT holds for |ut |d/2.

Example 3. Consider the HYGARCH model which is given by

ut = σtet, σ2
t = ω + θ(L)u2

t , (ω > 0) (2.29)

where θ(L) = 1− (δ(L)/β(L))(1+α((1− L)δ −1)) (α ≥ 0, δ ≥ 0). Here L is the lag operator defined by
Lyt = yt−1. HYGARCH model given by (2.29) includes IGARCH, FIGARCH, and classical GARCH
models depending on the values of α and δ. If δ > 0, then S = 1 − (δ(1)/β(1))(1 − α). When δ in
(2.29) is not too large, then this model will correspond closely to the following case

θ(L) = 1 − δ(L)
β(L)

(1 − αϕ(L)), ϕ(L) = ζ(1 + δ)−1
∞∑
j=1

j−1−δL j, (δ > 0) (2.30)

and ζ(·) is the Riemann zeta function (Davidson, 2004). Note that δ > 1 in (2.29) gives rise to
negative coefficients where as δ in (2.30) can take any positive values. Let δ > 1 in (2.30) and
S = 1− (δ(1)/β(1))(1−α) < 1, then Theorem 4(a) yields the FCLT for ut in (2.29) with θ(L) given by
(2.30).

Example 4. For an ARCH(∞) model in order to σ2
t ≥ 0 with probability 1, all its coefficients are

expected to be nonnegative. In general, nonnegative coefficients condition for HYGARCH model are
more complicated than those of FIGARCH (Conrad and Haag, 2006; Conrad, 2010). Li et al. (2015)
suggests the following so called HGARCH process

ut = σtet, σ2
t =

γ

β(1)
+ ω

{
1 − δ(L)

β(L)
(1 − L)δ

}
u2

t , (0 < δ ≤ 1, ω > 0, γ > 0). (2.31)

The process given by (2.31) allows the existence of finite variance as in HYGARCH models, while
it has a form nearly as simple as FIGARCH models. σ2

t in (2.31) can be rewritten as σ2
t = γ/β(1) +∑∞

j=1 θ ju2
t− j. When ω < 1, S =

∑
θ j = ω < 1 and there exists a unique strictly stationary solution u2

t

to (2.31) with E(u2
t ) < ∞. If in addition µ1/2

4 ω < 1, then applying Theorem 5 yields the FCLT for u2
t

and σ2
t .
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3. Simulations

3.1. Structural breaks of the ARCH(∞) model

As an application of the FCLT, we consider the cumulative sum (CUSUM) tests for mean break and
variance break.

H0 : no structural breaks versus H1 : not H0.
The following CUSUM statistics are the most often used statistics to test for the stability of { f (ut) :

1 ≤ t ≤ n}:

QM
n =

1
σ̂n
√

n
max
1≤k≤n

∣∣∣∣∣∣∣ ∑1≤i≤k

f (ui) −
k
n

∑
1≤i≤n

f (ui)

∣∣∣∣∣∣∣ , f (ui) = ui

and

QV
n =

1
σ̂n
√

n
max
1≤k≤n

∣∣∣∣∣∣∣ ∑1≤i≤k

f (ui) −
k
n

∑
1≤i≤n

f (ui)

∣∣∣∣∣∣∣ , f (ui) = u2
i ,

where

σ̂2
n =

1
n

n∑
j=1

(
f (u j) − f (un)

)2
+

2
n

q∑
j=1

(
1 − j

q + 1

) n− j∑
i=1

(
f (ui) − f (un)

) (
f (ui+ j) − f (un)

)
, q < n

and f (un) = (1/n)
∑n

i=1 f (ui), 0 ≤ i ≤ n. According to Theorem 4 and 5, asymptotic null distributions
of QM

n and QV
n are all standard Brownian bridges (Csörgő and Horváth, 1997; Hwang and Shin, 2013).

3.2. A Monte-Carlo study

We conduct a simulation to examine the finite sample sizes and powers of the CUSUM test for breaks.
In this simulation study, we perform a test at a nominal level α = 0.05. The empirical sizes and powers
are calculated as the rejection number of the null hypothesis out of 1,000 repetitions. In order to see
the performance of Qn, we generate data by approximating ARCH(∞) by ARCH(10) model

ut = σtet, σ2
t = ω +

10∑
i=1

θiu2
t−i,

where {et} is a sequence of independent standard normal errors. We evaluate Qn with sample sizes
n = 1,000, 2,000, and 4,000. For power study of mean break tests, we add 0.002 to ut for all t > n/2.
For power study of variance breaks test, we multiply 1.1 to et for all t > n/2. The parameters for the
ARCH model are chosen as in Table 1: D1, D2, and D3 for ARCH(10) models with

∑10
j=1 θ j = 0.86,∑10

j=1 θ j = 0.84, and
∑10

j=1 θ j = 0.90, respectively which are estimation results for three data sets that
will be analyzed in Subsection 3.3 below.

The finite sample performance depends on the sample size n as well as the bandwidth parameter
q used to estimate the long-run variance and covariance. Since the optimal bandwidth is O(n1/3) for
the Bartlett kernel and the tests are very sensitive to q, we consider wide range of q values that are
1/3-order bandwidth: q1 = [2n1/3] and q2 = [4n1/3]. Table 2 summarizes the empirical sizes and
powers of mean break tests.



Functional central limit theorems for ARCH(∞) models 453

Table 1: Parameters for DGP
DGP θ1 θ2 θ3 θ4 θ5 θ6 θ7 θ8 θ9 θ10
D1 0.054 0.130 0.071 0.098 0.153 0.038 0.074 0.048 0.105 0.084
D2 0.046 0.135 0.092 0.105 0.074 0.062 0.074 0.093 0.091 0.063
D3 0.156 0.135 0.074 0.102 0.106 0.019 0.049 0.055 0.071 0.131

Table 2: Size (%) and power (%) of CUSUM test QM
n

n q D1 D2 D3
Size Power Size Power Size Power

1,000 20 4.0 84.3 3.9 96.3 3.7 92.1
1,000 40 2.9 83.1 2.7 93.4 3.9 90.4
2,000 25 4.3 92.6 4.4 98.7 4.1 96.8
2,000 50 4.1 93.7 3.7 96.2 3.3 98.2
4,000 31 3.9 97.4 3.8 99.3 4.2 98.9
4,000 63 4.5 98.9 3.9 99.7 4.3 99.8

Nominal level is 5%; number of replication is 1,000. CUSUM = cumulative sum.

Table 3: Size (%) and power (%) of CUSUMSQ test QV
n

n q D1 D2 D3
Size Power Size Power Size Power

1,000 20 21.9 40.4 23.4 47.0 27.6 44.1
1,000 40 4.3 13.2 5.6 23.4 6.5 16.8
2,000 25 23.4 45.9 20.9 54.5 25.9 44.7
2,000 50 6.2 35.3 5.7 30.1 7.0 24.1
4,000 31 21.3 72.1 15.0 66.7 20.7 51.8
4,000 63 5.6 51.8 5.5 62.5 5.3 29.4

Nominal level is 5%; number of replication is 1,000. CUSUMSQ = cumulative sum of squares.

Table 2 show that QM
n has no severe size distortions in most cases. The empirical sizes are reason-

ably close to the nominal level 0.05 as n increases. Meanwhile, we can see that the powers are close
to 0.9 when the sample size n is over 2000.

In Table 3, the size block shows that QV
n has unstable sizes. In addition, the power values susb-

stantially decrease as q increases in ARCH(10) model. Since f (ut) is strongly autocorrelated when
f (ut) = u2

t , it is important to estimate long-run variance. The performance of estimator is sensitive to
bandwidth q which is used to estimate σ2 and represents another research area in selecting an optimal
bandwidth.

3.3. Real data analysis

In this section, we apply our tests to three real data sets: log-returns of the KOSPI, the S&P500 index,
and the KRW/USD exchange rate during the period from January 2, 2007 to December 29, consisting
of 2480, 2480, 2518 observations.

In Figure 1, we observe that the log-returns rapidly fluctuate and spike to a peak around the year
2009. It shows the volatility change during global financial crisis of 2008. Through the graphs, we
find that three log-returns might have some breaks: in 2008 and in 2011.

We first apply the goodness-of-fit test to examine whether the ARCH(10) model fits the data well.
Since the obtained p-values are 0.9467, 0.7265, and 0.8580, respectively, we conclude that these three
data sets are well fitted to ARCH(10) model. We perform the CUSUM tests and CUSUMSQ tests for
these data sets.

We see significant CUSUM test for the S&P500 index with p-values 2.1%, which implies the
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Figure 1: Time series plots of log-returns for 2007–2016.

Table 4: CUSUM test QM
n for log-returns for 2007–2016

QM
n p-value(%)

KOSPI 0.768 59.7
S&P500 1.511 2.1
KRW/USD 1.179 12.4

CUSUM = cumulative sum.

Table 5: CUSUMSQ test QV
n for log-returns for 2007–2016

QV
n p-value(%)

KOSPI 2.289 0.01
KRW/USD 1.610 1.10

CUSUMSQ = cumulative sum of squares.

presence of at least one mean break. However, the KOSPI and the KRW/USD exchange rate have no
significant p-values for the CUSUM tests. Therefore, the CUSUM test does not provide us statistical
evidence for mean break for the KOSPI and the KRW/USD exchange rate (Table 4).

We now perform the CUSUMSQ tests for the KOSPI and the KRW/USD exchange rate, in which
no mean shifts exist. In these cases we see significant CUSUMSQ tests for the KOSPI and the
KRW/USD exchange rate with p-values 0.01% and 1.1%, respectively. The two data sets have at
least one variance break; however, the result does not involve the number of breaks and the dates for
the break times (Table 5).
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