• Title/Summary/Keyword: heterologous protein

Search Result 196, Processing Time 0.024 seconds

Multifactorial Regulation of G Protein-Coupled Receptor Endocytosis

  • Zhang, Xiaohan;Kim, Kyeong-Man
    • Biomolecules & Therapeutics
    • /
    • v.25 no.1
    • /
    • pp.26-43
    • /
    • 2017
  • Endocytosis is a process by which cells absorb extracellular materials via the inward budding of vesicles formed from the plasma membrane. Receptor-mediated endocytosis is a highly selective process where receptors with specific binding sites for extracellular molecules internalize via vesicles. G protein-coupled receptors (GPCRs) are the largest single family of plasma-membrane receptors with more than 1000 family members. But the molecular mechanisms involved in the regulation of GPCRs are believed to be highly conserved. For example, receptor phosphorylation in collaboration with ${\beta}$-arrestins plays major roles in desensitization and endocytosis of most GPCRs. Nevertheless, a number of subsequent studies showed that GPCR regulation, such as that by endocytosis, occurs through various pathways with a multitude of cellular components and processes. This review focused on i) functional interactions between homologous and heterologous pathways, ii) methodologies applied for determining receptor endocytosis, iii) experimental tools to determine specific endocytic routes, iv) roles of small guanosine triphosphate-binding proteins in GPCR endocytosis, and v) role of post-translational modification of the receptors in endocytosis.

Suspension culture of Stably Transformed Drosophila melanogaster S2 Cells expressing EGFP and EPO

  • Sohn, Bong-Hee;Lee, Jong-Min;Kim, Yong-Soon;Kang, Pil-Don;Lee, Sang-Uk;Chung, In-Sik
    • Proceedings of the Korean Society of Sericultural Science Conference
    • /
    • 2003.04a
    • /
    • pp.40-40
    • /
    • 2003
  • Recombinant plasmids harboring heterologous genes coding enhanced green fluorescent protein (EGFP) and erythropoietin (EPO) were transfected and expressed in Drosophila melanogaster S2 cells. Stably transformed cell populations expressing EGFP or monkey EPO were isolated after 4 weeks of selection with hygromycin B. (omitted)

  • PDF

Investigation of post-translational modification of the secreted protein expressed in insect cell lines using baculovirus expression vector system(BEVS)

  • Yun, Eun-Young;Goo, Tae-Won;Kim, Sung-Wan;Park, Kwang-Ho;Hwang, Jae-Sam;Kang, Seok-Woo;Kwon, O-Yu
    • Proceedings of the Korean Society of Sericultural Science Conference
    • /
    • 2003.04a
    • /
    • pp.82-83
    • /
    • 2003
  • In previous experiment, we reported when the heterologous protein is expressed by using baculovirus expression vector system (BEVS), although the amount of intracellular protein is abundant, the amount of extracellular Protein is poor. As the link in the chain of the research, we investigated the secretory pathway, important in case of the secretory protein, of the protein expressed in insect cells using BEVS. (omitted)

  • PDF

Cloning and Characterization of a Heterologous Gene Stimulating Antibiotic Production in Streptomyces lividans TK-24

  • Kwon, Hyung-Jin;Lee, Seung-Soo;Hong, Soon-Kwang;Park, Uhn-Mee;Suh, Joo-Won
    • Journal of Microbiology
    • /
    • v.37 no.2
    • /
    • pp.102-110
    • /
    • 1999
  • Genetic determinant for the secondary metabolism was studied in heterologous expression in Streptomyces lividans TK-24 using Streptomyces griseus ATCC 10137 as a donor strain. Chromosomal DNA of S. griseus was ligated into the high-copy number Streptomyces shuttle plasmid, pWHM3, and introduced into S. lividans TK-24. A plasmid clone with 4.3-kb BamHI DNA of S. griseus (pMJJ201) was isolated by detecting for stimulatory effect on actinorhodin production by visual inspection. The 4.3-kb BamHI DNA was cloned into pWHM3 under the control of the strong constitutive ermEp promoter in both directions (pMJJ202); ermEp promoter-mediated transcription for coding sequence reading right to left: pMJJ203; ermEp promoter-mediated transcription for coding sequence reading left to right) and reintroduced into S. lividans TK-24. The production of actinorhodin was markedly stimulated due to introduction of pMJJ202 on regeneration agar. The introduction of pMJJ202 also stimulated production of actinorhodin and undecylproidigiosin in submerged culture employing the actinorhodin production medium. Introduction of pMJJ203 resulted in a marked decrease of production of the two pigments. Nucleotide sequence analysis of the 4.3-kb region revealed three coding sequences: two coding sequences reading left to right, ORF1 and ORF2, one coding sequence reading right to left, ORF3. Therefore, it was suggested that the ORF3 product was responsible for the stimulation of antibiotic production. The C-terminal region of ORF3 product showed a local alignment with Myb-related transcriptional factors, which implicated that the ORF3 product might be a novel DNA-binding protein related to the regulation of secondary metabolism in Streptomyces.

  • PDF

Activity of Early Gene Promoters from a Korean Chlorella Virus Isolate in Transformed Chlorella Algae

  • Jung Heoy-Kyung;Kim Gun-Do;Choi Tae-Jin
    • Journal of Microbiology and Biotechnology
    • /
    • v.16 no.6
    • /
    • pp.952-960
    • /
    • 2006
  • As a unicellular green alga that possesses many of the metabolic pathways present in higher plants, Chlorelia offers many advantages for expression of heterologous proteins. Since strong and constitutive promoters are necessary for efficient expression in heterologous expression systems, the development of such promoters for use in the Chlorella system was the aim of this study. Proteins encoded by the early genes of algal viruses are expressed before viral replication, probably by the host transcriptional machinery, and the promoters of these genes might be useful for heterologous expression in Chlorella. In this study, putative promoter regions of DNA polymerase, ATP-dependent DNA ligase, and chitinase genes were amplified from eight Korean Chlorella virus isolates by using primer sets designed based on the sequence of the genome of PBCV-1, the prototype of the Phycodnaviridae. These putative promoter regions were found to contain several cis-acting elements for transcription factors, including the TATA, CAAT, NTBBF1, GATA, and CCAAT boxes. The amplified promoter regions were placed into Chlorella transformation vectors containing a green fluorescence protein (GFP) reporter gene and the Sh ble gene for phleomycin resistance. C. vulgaris protoplasts were transformed and then selected with phleomycin. The GFP fluorescence intensities of cells transformed with chitinase, DNA polymerase, and DNA ligase gene promoter-GFP fusion constructs were 101.5, 100.8, and 95.8%, respectively, of that of CaMV 35S-GFP-transformed Chlorella cells. These results demonstrate that these viral promoters are active in transformed Chlorella.

Effect of a PMR1 Disruption on the Processing of Heterologous Glycoproteins Secreted in the Yeast Saccharomyces cerevisiae

  • Kim, Moo-Woong;Ko, Su-Min;Kim, Jeong-Yoon;Sohn, Jung-Hoon;Park, Eui-Sung;Kang, Hyun-Ah;Rhee, Sang-Ki
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.5 no.4
    • /
    • pp.234-241
    • /
    • 2000
  • The Saccharomyces cerevisiae PMR1 gene encodes a Ca2+-ATPase localized in the Golgi. We have investigated the effects of PMR1 disruption in S. cerevisiae on the glycosylation and secretion of three heterologous glycoproteins, human ${\alpha}$1-antitrypsin (${\alpha}$1-AT), human antithrombin III (ATHIII), and Aspergillus niger glucose oxidase (GOD). The pmr1 null mutant strain secreted larger amounts of ATHIII and GOD proteins per a unit cell mass than the wild type strain. Despite a lower growth rate of the pmr1 mutant, two-fold higher level of human ATHIII was detected in the culture supernatant from the pmr1 mutant compared to that of the wild-type strain. The pmr1 mutant strain secreted ${\alpha}$1-AT and the GOD proteins mostly as core-glycosylated forms, in contrast to the hyperglycosylated proteins secreted in the wild-type strain. Furthermore, the core-glycosylated forms secreted in the pmr1 mutant migrated slightly faster on SDS-PAGE than those secreted in the mnn9 deletion mutant and the wild type strains. Analysis of the recombinant GOD with anti-${\alpha}$1,3-mannose antibody revealed that GOD secreted in the pmr1 mutant did not have terminal ${\alpha}$1,3-linked mannose unlike those secreted in the mnn9 mutant and the wild type strains. The present results indicate that the pmr1 mutant, with the super-secretion phenotype, is useful as a host system to produce recombinant glycoproteins lacking high-mannose outer chains.

  • PDF

Isolation and characterization of a protease deficient mutant of Aspergillus niger

  • Jeong, Hye-Jong;Lee, Mi-Ae;Park, Seung-Mun;Kim, Dae-Hyeok
    • 한국생물공학회:학술대회논문집
    • /
    • 2001.11a
    • /
    • pp.89-92
    • /
    • 2001
  • Aspergillus niger has been used as a host system to express many heterologous proteins. It has various advantages over other expression systems in that it is a small eukaryotic GRAS (Generally Recognized aS Safe) organism with a capacity of secreting large amount of foreign proteins. However, it has been known that the presence of an abundant protease is a limiting factor to express a heterologous protein. The proteases deficient mutants of A. niger were obtained using UV -mutagenesis. A total of 1 ${\times}$ $10^5$ spores were irradiated with 10-20% survival dose of UV, 600J/M2 at 280nm, and the resulting spores were screened on the casein -gelatin plates. Ten putative protease deficient mutants were further analyzed on the starch plates to differentiate the pro from the secretory mutant. An endogenous extracellular enzyme, glucose oxidase, was also examined to confirm that the mutant phenotype was due to the proteases deficiency rather than the mutation in the secretory pathway. The reduced proteolytic activity was measured using SDS-fibrin zymography gel, casein degradation assay, and bio-activity of a supplemented hGM -CSF (human Granulocyte-Macrophage Colony Stimulating Factor). Comparing with the wild type strain, less than 30 % of proteolytic activity was observed in the culture filtrate of the protease deficient mutant (pro -20) without any notable changes in cell growth and secretion.

  • PDF

Isolation and Analysis of the argG Gene Encoding Argininosuccinate Synthetase from Corynebacterium glutamicum

  • Ko, Soon-Young;Kim, Sei-Hyun;Lee, Heung-Shick;Lee, Myeong-Sok
    • Journal of Microbiology and Biotechnology
    • /
    • v.13 no.6
    • /
    • pp.949-954
    • /
    • 2003
  • The argG gene of Corynebacterium glutamicum encoding argininosuccinate synthetase (EC6345) was cloned and sequenced. The gene was cloned by heterologous complementation of an Escherichia coli arginine auxotrophic mutant (argG/sup -/). The cloned DNA fragment also complements E. coli argD, argF, and argH mutants, suggesting a clustered organization of the genes in the chromosome. The coding region of the argG gene is 1,206 nucleotides long with a deduced molecular weight of about 44 kDa, comparable with the predicted size of the expressed protein on the SDS-PAGE. Computer analysis revealed that the amino acid sequence of the argG gene product had a high similarity to that of Mycobacterium tuberculosis and Streptomyces clavuligerus. Two conserved sequence motifs within the ArgG appear to be ATP-binding sites which correspond to 2 of the 3 conserved regions found in sequences of all known argininosuccinate synthetases.

Functional Evaluation of the Rockbream (Oplegnathus fasciatus) Beta-actin Promoter as a Candidate Regulatory Element for DNA Vaccination

  • Kosuke, Zenke;Lee, Sang-Yoon;Kim, Ki-Hong;Nam, Yoon-Kwon
    • Fisheries and Aquatic Sciences
    • /
    • v.12 no.2
    • /
    • pp.98-103
    • /
    • 2009
  • The potential utility of the rockbream (Oplegnathus fasciatus) $\beta$-actin 5'-upstream sequence as a regulatory element for DNA vaccination was evaluated based on in vitro and in vivo heterologous expression assays. In the in vitro transfection experiment, the efficacy of the rockbream $\beta$-actin promoter to drive the expression of a downstream lacZ gene was significantly higher (more than fourfold) than that of the human cytomegalovirus (hCMV) promoter in two fish cell lines (grunt Haemulon plumierii fin and bluegill Lepomis macrochirus fry cell lines). In contrast, the functional activity of the rockbream $\beta$-actin promoter was hardly detectable in a mammalian mouse embryonic fibroblast cell line. Rockbream skeletal muscles injected in vivo with a GFP reporter construct driven by the $\beta$-actin promoter displayed the significantly higher expression of a GFP protein (more than threefold) than did those injected with hCMV promoter driven construct. Data from this study suggest that the homologous rockbream $\beta$-actin promoter could be used as a potential regulator for DNA vaccination in this species.