Cloning and Characterization of a Heterologous Gene Stimulating Antibiotic Production in Streptomyces lividans TK-24 Hyung-Jin Kwon, Seung-Soo Lee, Soon-Kwang Hong, Uhn Mee Park¹ and Joo-Won Suh* Department of Biological Science and Institute of Bioscience & Biotechnology, Myong Ji University, Yongin 449-728; ¹Division of Life Science, University of Suwon, Suwon 445-743, Korea (Received May 14, 1999/Accepted May 28, 1999) Genetic determinant for the secondary metabolism was studied in heterologous expression in Streptomyces lividans TK-24 using Streptomyces griseus ATCC 10137 as a donor strain. Chromosomal DNA of S. griseus was ligated into the high-copy number Streptomyces shuttle plasmid, pWHM3, and introduced into S. lividans TK-24. A plasmid clone with 4.3-kb BamHI DNA of S. griseus (pMJJ201) was isolated by detecting for stimulatory effect on actinorhodin production by visual inspection. The 4.3-kb BamHI DNA was cloned into pWHM3 under the control of the strong constitutive ermEp* promoter in both directions (pMJJ202; ermEp* promoter-mediated transcription for coding sequence reading right to left: pMJJ203; ermEp* promoter-mediated transcription scription for coding sequence reading left to right) and reintroduced into S. lividans TK-24. The production of actinorhodin was markedly stimulated due to introduction of pMJJ202 on regeneration agar. The introduction of pMJJ202 also stimulated production of actinorhodin and undecylproidigiosin in submerged culture employing the actinorhodin production medium. Introduction of pMJJ203 resulted in a marked decrease of production of the two pigments. Nucleotide sequence analysis of the 4.3-kb region revealed three coding sequences; two coding sequences reading left to right, ORF1 and ORF2, one coding sequence reading right to left, ORF3. Therefore, it was suggested that the ORF3 product was responsible for the stimulation of antibiotic production. The Cterminal region of ORF3 product showed a local alignment with Myb-related transcriptional factors, which implicated that the ORF3 product might be a novel DNA-binding protein related to the regulation of secondary metabolism in Streptomyces. Key words: $Streptomyces\ griseus$, heterologous expression, $ermEp^*$ promoter, stimulation of antibiotic production. Streptomyces spp. are well known for their capacity to synthesize an enormous variety of antibiotics as secondary metabolites. For most cases, a strain of Streptomyces has capacity to produce structurally unrelated secondary metabolites, and more than 10 biosynthetic steps are required to convert primary metabolites into the final product, which imply that this organism contains complex genetic determinations. Studies on the biosynthesis of each antibiotic have revealed involvement of pathway-specific regulatory genes, the most of which are found adjacent to the biosynthetic structural gene clusters and serve as activator of the biosynthetic structural genes (18, 26). In Streptomyces coelicolor A3(2), actII-ORF4 product acts as a pathway-specific acti- vator for actinorhodin (10), as redD and redZ do for undecylprodigiosin (28, 33). The individual biosynthetic pathway of antibiotics has been implicated under the pleiotropic regulation. Several pleiotropic regulatory loci were revealed in S. coelicolor A3(2) that produces four structurally unrelated antibiotics including actinorhodin and undecylprodigiosin (2, 5, 8, 9, 22). The known pleiotropic regulators include signaltransducing proteins which employ protein phosphorylation for their activities (27): AfsK-AfsR, eukaryotic type serine-threonine kinase (13, 19); AfsQ1-AfsQ2, two-component regulatory proteins (16); PtpA, phosphotyrosine protein phosphatase (30). Other than these kinase- and phosphataseencoding regulatory genes, diverse genetic determinants were implicated in the regulation of antibiotic production. The diversity of these regulatory elements makes it likely that several mechanisms ^{*}To whom correspondence should be addressed. (Tel) 82-335-330-6190. (Fax) 82-335-335-8249 (E-mail) jwsuh@wh.myongji.ac kr might be involved in regulating antibiotic production. The combination of all these regulatory mechanisms, and the still unknown connections between different levels of regulations in Streptomyces, make this topic challenging for further understanding of the control of secondary metabolites production. In efforts to understand the complex network of the regulation in antibiotic production of Streptomyces, new DNA sequences were examined for ability to stimulate actinorhodin production in Streptomyces lividans whose ability to produce actinorhodin was normally "silent". This attempt resulted in isolation of several new regulatory genetic loci; abaA (9), abaB (25), a gene encoding a putative antisense regulator (22). In the present study, we reported isolation of Streptomyces griseus DNA which stimulated actinorhodin production in S. lividans TK-24. Phenotypic studies implicated that there were isolated the genes for positive and negative regulation of antibiotic production in the region of 4.3-kb BamHI DNA from S. griseus ATCC 10137. #### **Materials and Methods** #### Bacterial strains and plasmids Escherichia coli DH5 α (23), pUC18 (32), and pBluescript KS(+) (Stratagene, La Jolla, Calif.) plasmids were used for routine subcloning. S. lividans TK-24 (14) and E. coli DH5\alpha were used as hosts for the high-copy number Streptomyces shuttle vector pWHM3 (31) or for their derivative plasmids (Table 1). #### DNA isolation, manipulation, and cloning. S. griseus ATCC 10137 was the original source of genomic DNA for the cloning experiments. Procedures for manipulation of Streptomyces and general recombinant DNA manipulation were as described elsewhere (14, 23). Protoplasts of S. lividans TK-24 was transformed using the procedures of Hunter (15). For the Streptomyces vector selection, thiostrepton was used at 50 µg/ml in agar and 10 g/ml in broth cultures. # Assay of actinorhodin and undecylprodigi- Actinorhodin production medium (17) contained (per liter) glycerol, 50 g; glutamic acid, 5 g; morpholinopropane sulfonic acid, 21 g; MgSO₄7H₂O, 200 mg; CaCl₂·2H₂O, 100 mg; NaCl, 100 mg; KH₂PO₄, 82 mg; $FeSO_4 \cdot 7H_2O$, 9 mg and trace element solution (14), 2 mL at a final pH 6.5. Fifty mililiters of the media were contained in a 250-mL baffled flask and incubated at 28°C with a shaking speed at 250 rpm. The media were inoculated with spores and mycelium from plate cultures of the recombinant strains of S. lividans TK-24 on R2YE agar (14). To prepare vegetative inocula, the cells from R2YE agar were added to 50 mL of R2YE medium in 250-mL baffled flask. The cultures were incubated for 72 h at $28 \,^{\circ}\text{C}$ at a shaking speed at 250 rpm; the mycelium obtained by centrifugation was washed, resuspended in the original volume of water, and was used to inoculate the production medium. Actinorhodin content and growth were determined following the method described by Liao et al. (17) and undecylprodigiosin content by Narva and Feitelson (20). #### DNA sequencing and analysis The nucleotide sequence was determined in both directions by the dideoxynucleotide chain termination method (24), using double-stranded plasmid DNA and the universal primers. DNASIS software (Hitachi) was used for sequence analysis. The codon usage pattern was determined by FRAME analysis (3). The Fasta3 program at the European Bioinformatics Institute (21) and the Blast program at the National Center for Biotechnology Information (1) were used to search for local alignment. #### Results Cloning and characterization of the DNA that stimulated actinorhodin production in S. lividans TK-24 Table 1. Plasmids used in this study | Plasmid | Genotype A derivative of pUC18 with a 1 7-kb DNA fragment; ermE | | | | | |---------|--|-----------|--|--|--| | pIJ4026 | | | | | | | pMJJ201 | A derivative of pWHM3 containing 4.3-kb BamHI DNA from S. griseus | This work | | | | | pMJJ200 | A derivative of pWHM3 containing 279-bp KpnI-BamHI fragment from plJ4026 | THis work | | | | | pMJJ102 | pBluescript KS(+) containing 4.3-kb Xbal-HmdIII fragment from pMJJ201 | This work | | | | | pMJJ103 | pBluescript KS(+) containing 4 3-kb BamHI fragment from pMJJ201 at the opposite direction of pMJJ201 | This work | | | | | pMJJ202 | A derivative of pMJJ200 containing 4 3-kb Xbal-HindIII fragment from pMJJ102 | This work | | | | | pMJJ203 | A derivative of pMJJ200 containing 4.3-kb Xbal-HindIII fragment from pMJJ103 | This Work | | | | **Fig. 1.** (**A**) Restriction map of the 4.3-kb *Bam*HI region. The significant restriction endonuclease sites are noted below. The plasmids derived from pMJJ201 (Table 1) were shown. (**B**) Activation of actinorhodin production due to introduction of pMJJ201 or pMJJ202 on R2YE agar. The recombinant *S. lividans* TK-24 strains grown on R2YE agar at 28°C for 7 days. **a**, **b**, **c**, and **d** indicate *S. lividans* TK-24 harboring pMJJ200, pMJJ201, pMJJ202, and pMJJ203, respectively. The DNA fragment between approximately 4.0kb and 6.0-kb in BamHI-digested chromosomal DNA of S. griseus ATCC 10137 was recovered from the gel, purified, and ligated into the high-copy number Streptomyces shuttle vector pWHM3. The ligation mixture was introduced by transformation into S. lividans TK-24, with selection of thiostrepton resistance. Among the transformants, an intensively blue colony was isolated. Analysis of plasmid DNA (named as pMJJ201) from this colony revealed 4.3-kb insert in the cloning site of the vector (Fig. 1A). The cloned DNA was subcloned into pMJJ200, a derivative of pWHM3 containing ermEp* promoter, in both directions (named as pMJJ202 and pMJJ203, respectively) and reintroduced into S. lividans TK-24 (Fig. 1A). As shown in Fig. 1B, S. lividans TK-24 transformed with pMJJ201 or pMJJ202 showed blue pigment production, whereas the strain Fig. 2. Growth (A) and production of actinorhodm (B) and undecylprodigiosin (C) of *S. lividans* TK-24 transformed with pMJJ200-203 in the actinorhodin production medium. ○, ●, ▲, and □ indicate strains harboring pMJJ200, pMJJ201, pMJJ202, and pMJJ203, respectively. The cultures were prepared in the production medium with inocula of spores and mycelium from plate cultures of R2YE agar. The cells were cultured in 50 mL of the broth in a 250 ml-baffled flask at 28°C with a shaking speed at 250 rpm. harboring pMJJ200 or pMJJ203 showed negliable pigment production. The strain with pMJJ202 showed more intense color development than the strain with pMJJ201. On visual inspection, the strains with pWHM3 and pMJJ200 showed no difference in the pigment production on R2YE agar. S. lividans TK-24 transformed with the pWHM3 derivatives were cultured in R2YE broth, and productions of actinorhodin and undecylprodigiosin were examined. In the R2YE broth culture, S. lividans TK-24 could not produce actinorhodin. However, actinorhodin was produced upto 18.5 mg/L in S. lividans TK-24 harboring pMJJ202. The growth of the strain harboring pMJJ202 was significantly retarded compared to other recombinant strains consistent with the growth-interference of pMJJ202-introduction detected by visual inspection on R2YE agar. In the culture condition employed, the growth of the strain with pMJJ202 measured as 10 mg/mL in dried cell weight, whereas those of other recombinant strains measured 18 to 22 mg/mL. # Phenotypic studies of the recombinant S. lividans TK-24 The productions of actinorhodin and undecylprodigiosin were examined in actinorhodin production medium permitting the substantial accumulation of both pigmented antibiotics. The cell growth decreased considerably by introduction of the 4.3-kb DNA (Fig. 2A). Compared to S. lividans TK-24 harboring pMJJ200, actinorhodin production increased up to 180% in the strain harboring pMJJ202 at 8 days after initiation of the cultures, and the enhancement was clearly observed at 4 to 6 days (Fig. 2B). Actinorhodin production was somewhat low in the strain harboring pMJJ201 and markedly repressed in the strain harboring pMJJ203 compared to the strain harboring pMJJ200; actinorhodin content in the strain harboring pMJ203 measured only a third of that detected in the strain harboring pMJJ200 at 8 days after initiation of the cultures. Undecylprodigiosin production of the strains with pMJJ202 and pMJJ201 increased upto 150% and 130% of that of the strain harboring pMJJ200, respectively (Fig. 2C). The introduction of pMJJ203 lowered undecylprodigiosin content, but the decrement was relatively low compared to that observed in actinorhodin production (Fig. 2B and C). When productions of actinorhodin and undecyl-prodigiosin were examined in the cultures inoculated with mycelium from R2YE broth culture, marked differences in the productivities were observed (Fig. 3B and C). Whereas the production of the pigmented antibiotics of the strain with pMJJ200 was significantly limited, compared to the productivity observed in Fig. 2, the pigments were markedly overproduced due to introduction of pMJJ202 to an extent obtainable in expt of Fig. 2. The pigment production of the strain harboring pMJJ201 or pMJJ203 measured as a basal level (Fig. 3B and C). ### **Nucleotide Sequence Analysis** Computer-aided FRAME analysis (3) with the nucleotide sequence of the 4.3-kb BamHI DNA predicted putative three complete coding sequences (Fig. 4). The average G+C content for third codon position for each coding sequences were 87.6, 82.1, and 92.0%, respectively. There were two reasonable Fig. 3. Growth (A) and production of actinorhodin (B) and undecylprodigiosin (C) of S. lividans TK-24 transformed with pMJJ200-203 in the actinorhodin production medium. \bigcirc . \bullet . \blacktriangle , and \square indicate the strains harboring pMJJ200, pMJJ201, pMJJ202, and pMJJ203, respectively. The cells were cultured in 50 ml of R2YE broth in a 250 ml-baffled flask for 3 days at 28°C with a shaking speed at 250 rpm and used to inoculate the production medium to be approximately 0.1 of A_{B40}. The inoculated production mediums were maintained at the same culturing condition. candidates for the translational start codon of ORF1, ATG (nt 261 to 263) and TTG (nt 279 to 281). By finding Shine-Dalgano sequence located at nt 273 to 276 (GAGG), a TTG codon at nt 279 to 281 was assigned as the translation start site. ORF1 was predicted to terminate at a TGA codon at nt 1710 to 1712. Comparison of the ORF1 product with known proteins revealed that the ORF1 product showed regional similarity to Hsp70 proteins, a family of proteins highly conserved in evolution (6, 7); The ORF1 product was most similar to Hsp70 protein of S. griseus 2247 (11), with an | BanHT | | | | | | | |--------------------------|-----------------------------------|-------------------------------------|--|-----------------------------------|-------------------------------------|----------------------| | GGATCCCCGT
CLCGGCGCAC | GAGTTCCGCC | CGCCTCGCGA
GCGGCTCTCC | CEGTECTEAG
CTEECCEEAG
CCEAAGCCEC | CGGATCGGCG
CGCTCACCAC | CGCATTGGGA
ICTCATCCAG | 60
120 | | CGGCACGCAC
ACGGCCGACC | GECCCCGÃCC
GAACGCGGCG | CGGCGGGGGG | GTCGGGCCGT | CGGGGCCACG
CGGCATCGAC | GCGCCGCCGG
TTCGGGACGA | 180
240 | | CGAACTCGGC | GGTCGCCGTC | ATGGAGGGCG | GCGAGGTCTT | GITGATCCC | AACGCCCAGG
N A Q G | 300 | | GCAGGCATAC
R H T | CACTCCCAGC
T P S | CTGGTGGCCC
L V A L | T A E | GĞGGĞACĞCG
G D A | CTGGTCGGCĂ | 360
27 | | CGGACGCCGA
D A E | GCGGCAGGCC
R Q A | CTTĠCCĀACC
L A N P | CCGGCTTCAC
G F T | CĞCGĞGCĞCC
A G A | GCCATGCTGT
A M I. W | 420
47 | | GGCTGGGCAC
L G T | CGACTGGCGT
D W R | GTCGCGCGGG
V A R G | GCGGGGTACG
G V R | GCTGACCGCC | GAGGACGTCG
E D V A | 480 | | CCGGGCTGGT
G L V | CCTCGCCCGC
L A R | CTGCGCGAGG
L R E D | ACĞCCĞAGĞC
A_E_A | Y L G | GAGCCGGTCA
E P V T | 67
540
87 | | DAV | L A V | CCCGCTGGTT
P A G F | R R D | CCAGCGTGCC
Q R A | GCGCTGGGGG
A L G A | 600
107 | | CCCGCGGTGA
R G E | ACGGGCCGGG
R A G | CTCAACGTTC
L N V L | TGCGGCTGGT
R L V | CAACGTGCCT
N V P | ACGGCCGTGG
T A V A | 660
127
720 | | CGACGTCCTA
T S Y | CGGGCCGAAC
G P N
CGTCTCCCIC | CGGGACGACC
R D D L | TCACIGICCT | GGTCTTCGAT V F D | CTCGGCGGGG | 147 | | GCACCCTCGA
T L D | CCGCCTCGGC | ATCGAACTCG
I E L G
GGCAACGACT | GTGACGGCGT
D G V | CGTGGAGATC
V E I
GATCGTCGAG | AGGGCCACGC
R A T P
CACCTGACCG | 780
167 | | A D S ACCATGTGCG | R L G | G N D W
GGCGTGGATC | D Q R | I V E TGTCGCCGCG | H L T D
ATCCAGCGGC | 840
187
900 | | H V R TGCGCGAGGC | R R H
GGCCGAGACG | G V D L
GCAAGGATCG | T G D | V A A GGCGCGTACC | I Q R L
ACGACCGTCC | 207
960 | | R E A
GECTGCCTTA | AET | A R I E
GGTCCGGACA | L S A
GCCCCGTCCA | ART | T T V R | 227
1020 | | L P Y
GCGAGGAGTT | L A T
GGAGAGGCTC | G P D S
ACCCAGGACC | P V H
TGCTGGAACG | L E E
CTGCCGAACC | E L T R
CCGGTCGAAA | 247
1080 | | ACGICCICGC | E R L
CGACGCCGGG | T Q D L
TGCACGCTCG | L E R
CCGATATCGA | C R T
TCAGGTCGTC | P V E N
CTGACGGGCG | 267
1 14 0 | | GTGCCGCCCT | GATGCCTGCG | C T L A
GTGGGCGACC | TGGTCCGCCG | GCTCACGGGC | L T G G
GGCCAGGGGT | 287
1200 | | CCŢACCAGGG | TCTGAGCCCG | gaggeegttg. | TCÇATĞGCĞC | GGTGCTCCAG | G Q G S
GCAGGCATCC | 307
1260 | | TGĂCCĞGĞA | GGTGAAGGAC | ĠŢĠĊŢĠĊŢĊĊ | TGGACGTCGC | CCCCTACTCG | ATCĢGCĢTCĢ | 327
1320 | | AAACGCACGA | CGGGACCATG | AAGAAGCTGC | TCÇAGÇGGÂA | CACGACCATC | ÇCCÀCGÀGGÇ | 347
1380
367 | | GOTOCGACGT | CTTCACCACG
R S D | ÇAÇÃCGĞAÇĞ | ACĈAGĈCCĂT
H T D | GGTGTTATTC | CACATCGTGG | 1440
387 | | AGĞGCĞAGĞG
H I V | AÄAGĞACĞCC
E G E | ĠCGĈGGÂACŤ
R K D Å | GGCCCCTCGC
A R N | | ÉTCÉCCÉTEC
A V L E | 1506
407 | | CTCCCGCTCC | TOGOGGTGTG | CCCATGATCG | Sa.
AGGTGACGGT | | GCCAGCGACG | 1560 | | L A L
ATCTTCATAT | P P A
CAAGGTCAGG | P R G V
GATCTGGGCA | P M I
CGGGCAACGA | E V T | V D C T
ACGGTCGGCC | 427
1620 | | AJECGACGAA | D L H
GGAACGAGCG | ECGECGCTCC | TGCGCTCCTC | ccecieeëcc | E T S A
CGCCTGCGTG | 447
1680 | | ATCTCGTCCC | TETGACTEAC | ğeeğec <u>ğet</u> ğ | GAATGÇTCĞT | GTTCCCGCGT | S R W A
CGTACTCCAC | 467
1740 | | CTCGACATCG | ACGCGATCGA
GGTTGCCCGG | CGGAACCGGG | GGCTGCCGGC
TGTCCGGCTG | TCGTGCCACG | GAAGGCACGT | 480
1800
1860 | | | CCAGGAATCG | | | SacI | | 1920 | | | TCCTTGGCGT | гbs | | | IGTTCCTGGT | 1980 | | | TTGGAGGTGC
L E V P | | | V G G V
GTGTCCTCCE
S S S | | 2040
27 | | CGGCCCGGAG
G P E | GTTTTCGACC
V F D R | | | GGCGGGGTGC | cceeeeeecec
aai | 2100 | | | GETETEACCE
G V I G | GEGTCGCCGG | GEGGGGGGGG | AACĞTCCGCT
N V R C | GCGGCGGTTT
G G F | 47
2160
67 | | CĞAGĞAGĞTC
E E V | ĞGCĞAĞİTCĞ
G E F G | | | | CCCCAGCGGG | 22 <u>2</u> 0
87 | | TĒGCĒTGĒGT
Ē L R | ČGGČGAČCTĚ
R Ř A Ğ | GGTGAGACGG
* | | | | 22 <u>80</u>
94 | | SacI
AGCTCCCGGT | TGATCACCCC | GGGATTTGIC | CCCCAGGTCA | CGGGCGTGGT | GCCACAACCG | 2340 | | CCCCTGCTCC | GCCGCTGTT | GGGTCCGGTC
AG | ACGCCGGGGC
TGCGGCCCCG | GGTGGTCATC
CCACCAGTAG | GTCCGCGTCC
CAGGCGCAGG | 2400 | | TTGGCGGCGG | TGCGGGGGCG | GTGGTTCGGC | * A P A GGTGTGCGGG | T T M
GGCGGCGGGT | T R T
TCGGTGGGGG | 390
2460 | | AACOGCCGCC
R P P P | ACGCCCCCGC | CACCAAGCCG
T T R | CCACACGCCC
R H A P | CCGCCGCCCA
A A P | AGCCACCCCC
E T P | 370 | | CEGETCCECC GECCGCECC TECTTCECTE TEGCGETATC CEGGACGETE GECCAGECCE CCGCCCCE ACGAAGCCAC ACCACATAG GCCCTGCCAC C | TGGAGCGGG | 2520 | |--|------------------------------------|----------------------| | ACCEGECTEC GETEGTEGAG ACCEGEGEGC COCTEGECAG GEGTTEGTCG A | T S R
GTGGTGTGG | 350
2580 | | S P A A T T S V R P G T P L P Q D TGAGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGG | | 330
2640 | | ACTOCOGGAC CACCAGGG TOCTCOTOGG COCACCACTA CAGGCCTOTOG C | XCCGCCACG
P G T
POSTPOTGCT | 310
2700 | | CEGTOTTOG COACABOOCA CECTAGECCO CETOTAGECE COGETOCOGE G | GCAAGACGA
G N Q | 290 | | SacI GGGTCATGCG GTGGGCGAGG GCGGGCCACT GACGGGAGCT CACCAGGAGC GCCAGTACGC CACCAGGAGC CGCCGGTGA CTGCCCTCGA GTGGTCCTCG C | cggcgtccc | 2760 | | GCTGGGGCAG GGCTTCGTTG ACCTGGCTCA CCAGGGTGCG GTGGGCGGCG G | A A B
SGGGTGATGC | 270
2820 | | P O P I A F N V O S V L T R H A A | CCCACTACG
P T I
ATGTCGAGGC : | 250
2 8 80 | | GCTCGACAAG GTCCCGCGCC CGCGCCAGCG ACTCCAGCTC CAGCACCCCC T | TACAGCTCCG
I D L | 230 | | CTTCGGTGAG CGGGCCCAG AGGTTCCTCG CGTCGGCGCT CACCTCCGGA GAAGCCACCTC GCCCGGGGTC TCCAAGGAGC GCAGCCGCGA GTGGAGGCCT C | ĠĊŢĠĠĊĠŦ | 29 4 0
210 | | GETTL PGWLNRADAS VEP
CGGCCGCGCCGGGGGGGGGGGGGGGGGGGGGGGGGGG | A L P
GGGCGCACGG
CCCGCGTGCC | 3000 | | VAAARAPPRPLPRPLPRPRP
creregores sectoresec creegosces testoscest satesceste s | P R V
SCGATGGTCT | 190
3060 | | | CGCTACCAGA
A I T
CCGATGCCCT | 170
3120 | | CCAĞCTACĞC CTCCĞĞACĞA CACACCCĞCA GCCACTCCTA CGCCCACTGC A D I R I G A T H A D T I I R T V GCTCGTGGAĞ GCĞÇCCATÇ GTGÇÇĞGCĞA TGTÇĞĞĞÇÇA GĞTAĞĞĞĞAĞ Ğ | AGCTACGGGA
D I G | 150
3180 | | CCAGCACCTC CGCCGGGTAC CACCGCCGCT ACAGCCCGGT CCATCCCCTC C | CCTCCTAGC
A L I | 130 | | COTTCCOGAC CAGGCCCTCG GOGAGGGTGG TGCGCAGGAG ATCGGCCCAC C
GCAAGGCCTG GTCCGCAAC CCCTCCCACC ACGGTCCTC TAGCCGGGTG G | #CCAGCCACG | 3240 | | A N R V L G D P L T R L L D A M
CCTCGGTCTT CGTGCGGGG GTGTTGCGGG CGACGGCGG CTCGACGCCT G
GGAGCCAGAA GCACGCCCGC CACAACGCCC GCTGCGGGG GAGCTGCGGA C | R D T
GCGGCCATGG
GCCGGTACC | 110
3300 | | GETKTRATNRAVAREVG
Sali | AAM | 90 | | | BAGACGAGTT
CTCTGCTCAA | 3360 | | Gacagaaga Cacagaagaaga Gacagaaga Gacagaaga Gacagaaga Gacagaaga Gacagaagaaga Gacagaagaagaagaaga Gacagaagaagaagaagaagaagaagaagaagaagaagaag | S V L
BAGCCGGGCA
ETCGGCCCGT | 70
3 42 0 | | арат уры прт ктін пі. | SGP | 50
3480 | | LHKGLEDASWWSQA_MQG | I D D | 30
3540 | | GCAGGTCGTG TTCCTGGCCG TGGTGTGTT TCTGGGAGGC GCGGCGGACC GCGTCCAGCAC AAGGACCGGC ACCACAAA AGACCCTCCG CGCCGCCTGG CP L D H E Q G H H H K Q S A R R V | EGCAGGCGCT
A D A | 3540 | | TOSTGAGGAT CAGCORGACG GACATOGOGG CGGCCTGCGC GGCTTCGGAG A | | 3600 | | AGCACTCCTA GTCGGCCTGC CTGTAGCGCC GCCGGACG | | 1 | | ABTACGGCTC GCCCGACAGT TGGGCGGGCG CGGGAGTGGT CACTGGGSAG GCGTGGTCAGC GCGAGCGCC CGGACCGGC CCCTGGGG GACCTGGGGC G | | 3660
3720 | | GCGGGGCGG GCCGGGGTGC TGGGTGCGGT CCGGTGGGGG GTCGGGTCGG T | | 3780
3840 | | - GETETTETEG TECCEGECEGE GECCCCGTC AGGICGGCGG CIICGCGCAG G | FAGGGCGGCG | 3900
3960 | | GCGGGGGCCC CGGTCAGGTC GGCGGCTTCG GGCAGGAGGG CGGCGGCCTG G | EGCCCGTTGA | 4020 | | GCGCCGGCC GCCCGTCGAC CGTGCTGGAA GGTGTCCGGT CTTCGTGAAG GCCGCTGATC ATGGCGAATC GGCTGGGCCG GTGGGCGTTA CGACTGGGCCG T | TGCGGGTCGT | 4080
4140
4200 | | TGGGACTGTT ATGGCGATGC GTGAAGGTTC TCGGCTCTGC GTGATGTGCG G
Sali
GCTCGGCGGG ACGGCATATC TGGTCGACGG CGCCCGGCGG CAGGGTCGTC G | | 4200
4260 | | TOGCTTCCTG ATCTGCGGGT CCTGCTACGA CCGAGGGTGT CCGGATCC | | 4308 | | | 0 : 7 | | $\textbf{Fig. 4.} \ \textbf{Nucleotide sequence of the 4,} 308 \textbf{-bp } \textit{Bam} \textbf{HI fragment.} \ \textbf{The deduced amino acid sequence of the proposed translation product}$ is given below the nucleotide sequence. The asterisks denote translation termination codons. For ORF3 reading right to left, both strands are shown. Potential ribosomal binding sites (rbs) are noted, as are significant restriction endonuclease sites. The nucleotide sequence was deposited to the GenBank database under the accession number AF147749. 108 Kwon et al J. Microbiol identity score of 53% and a similarity of 70% at the region of amino acid residues 26 to 472. The *hsp70* gene of *S. griseus* 2247 encodes the 67 kDa protein with 618 amino acid residues (11). ORF2 was predicted to start at a GTG codon at nt 1961 to 1963 and terminate at a TGA codon at nt 2243 to 2245. ORF3 was predicted to start at a ATG codon at nt 3565 to 3563 and terminate at a TGA codon at nt 2371 to 2369. ORF2 and ORF3 had putative Shine-Dalgano sequences located 8 bp upstream from the initiation codons. # Discussion Genetic locus for regulation of secondary metabolism was looked for by its ability to stimulate actinorhodin production in S. lividans TK-24. As a DNA donor, we chose S. griseus ATCC 10137 for its ability to produce streptomycin, which is biosynthetically unrelated to the known metabolites of S. lividans TK-24. We employed constitutive ermEp* promoter for amplified expression of coding sequences in the cloned DNA. The introduction of the 4.3-kb BamHI DNA on a high-copy vector activated actinorhodin production on R2YE agar, and amplified expression through ermEp* promoter for coding sequence(s) reading right to left (Fig. 1A) resulted in dramatic stimulation of actinorhodin production (Fig. 1B). The result indicated that there might be a sequence activating actinorhodin production in the 4.3-kb BamHI DNA, and the putative coding sequence be read right to left. The activating effect was also observed in the R2YE broth culture. However, the production of undecylprodigiosin was not increased by the introduction of the 4.3-kb BamHI We employed chemically defined medium rendering a substantial accumulation of actinorhodin together with undecylprodigiosin and investigated the effects of the 4.3-kb BamHI DNA on the production of these two pigments. Undecylprodigiosin accumulated during the exponential growth phase, and actinorhodin production occurred mainly in the stationary phase (Fig. 2), which implicated that the physiological controls on the productions of the two pigments were markedly disparate. As shown in Fig. 2B and C, undecylprodigiosin production of the strain harboring pMJJ201 increased to an extent comparable to that of the strain harboring pMJJ202 but actinorhodin production was somewhat decreased by the introduction of pMJJ201. This phenomenon implicated that there may be a promoter for the coding sequence reading right to left, and the promoter was only active at the exponential growth phase. The production of the pigments was strictly limited when the actinorhodin production medium was inoculated with mycelium from R2YE broth culture (Fig. 3B and C). It was likely that the growth reached stationary phase too early that physiological signal(s) triggering gene(s) relating to the secondary metabolism failed to fully generate. This limitation in the antibiotic production was overcome by the expression of the putative coding sequence reading right to left in the 4.3-kb BamHI DNA. In this culture condition permitting shortexponential growth phase, the strain with pMJJ201 showed a nearly complete inhibition in the production of the two pigments as did the strain with pMJJ203. Therefore, it was suggested that the expressions of the activating sequence (reading right to left) and the inhibiting sequence (reading left to right) were clearly disparate depending on growth stages; the former expressed mainly at the exponential growth phase and the latter did at the stationary phase. The nucleotide sequence analysis of the 4.3-kb BamHI DNA revealed one coding sequence reading right to left, ORF3, and two coding sequences reading left to right, ORF1 and ORF2. Therefore, it was suggested that the antibiotic production was regulated in positive manner by ORF3 product and in negative manner by either ORF1 or ORF2 product. However, no significant similarity to protein sequences in the data bases was observed for ORF2 and ORF3, and ORF1 showed only a regional similarity to hsp70. Although no significant similarity to protein sequences in the data bases was observed for ORF3, a putative regulatory sequence which acted in positive manner, some characteristics of the deduced protein were obtained through computer-aided search for regional similarities. The regions of lowcomplexity ('simple sequence' or 'composition biased regions') were analyzed through PredictProtein server in EMBL (34), and the regions not marked as 'simple sequence' were separately analyzed for a local alignment using the PSI-Blast Program. The region of residue 264 to 385 showed a significant alignment with ALL-1 protein (a mammalian zinc finger protein; GenBank Accession No. P55200) with 23% identity, 41% similarity, and 15% gap in the alignment of 122 residues. The region of residue 215 to 293 showed a significant alignment with Myb-related transcriptional factors of various origins; most similarity with DNA-binding protein MybHv5 of Hordeum vulgare (GenBank Accession no S35729) with 24% identity, 40% similarity, and 7% gap in the alignment of 79 residues. Although a putative DNA-binding motif could not be assigned, the alignments implicated that the ORF3 product might be a eukaryotic type DNA-binding protein related to the regulation of secondary metabolism. ORF1 or ORF2 product was supposed to be a negative effector of secondary metabolism. However, it could not be completely ruled out that the observed effect of the 4.3-kb DNA might have originated from the region other than the predicted coding sequences. ### Acknowledgments This work was supported by a grant No. KOSEF 961-0100-001-2 from Korea Science and Engineering Foundation. ## References - Altschul, S.F., W. Gish, W. Miller, E.W. Myers, and D.J. Lipman. 1990. Basic local alignment search tool. J. Mol. Biol. 215, 403-410. - Beppu, T. 1995. Signal transduction and secondary metabolism: Prospects for controlling productivity. Trends Biotechnol. 13, 264-269. - Bibb, M.J., RR. Findlay, and M.W. Johnson. 1984. The relationship between base composition and codon usage in bacterial genes and its use for the simple and reliable identification of protein-coding sequences. *Gene* 30, 157-166. - 4. Bibb, M.J., G.R. Janssen, and J.M. Ward. 1985. Cloning and analysis of the promoter region of the erythromycin-resistance gene (ermE) of Streptomyces erythraeus. Gene 38, 216-226. - Bibb, M. 1996. 1995 Colwirth Prize Lecture. The regulation of antibiotic production in Streptomyces coelicolor A3(2). Microbiology 142, 1335-1344. - Chirico, W.J., M.G. Water, and G. Blobel. 1988. 70K heat shock related proteins stimulate protein translocation into microsomes. *Nature* 332, 805-810. - Deshaies, R.J., B.D. Koch, M. Werner-Washburne, E. A. Craig, and R. Schekman. 1988. A subfamily of stress proteins facilitates translocation of secretory and mitochondrial precursor polypeptides. *Nature* 332, 800-805. - Fernandez-Moreno, M.A., J.L. Caballero, D.A. Hopwood, and F. Malpartida. 1991. The act cluster contains regulatory and antibiotic export genes, direct targets for translational control by the bldA tRNA gene of Streptomyces. Cell 66, 769-780. - 9 Fernandez-Moreno, M.A., A.J. Martin-Triana, E. Martinez, J. Niemi, H.M. Kieser, D.A. Hopwood, and F. Malpartida. 1992. abaA. A new pleiotropic regulatory locus for antibiotic production in Streptomyces coelicolor. J. Bacteriol. 174, 2958-2967. - Gramajo, H.C., E. Takano, and M.J. Bibb. 1993. Stationary-phase production of the antibiotics actinorhodin in *Streptomyces coelicolor* A3(2) is transcriptionally regulated *Mol. Microbiol.* 7, 837-845. - 11. Hatada, Y., H. Shinkawa, K. Kawamoto, H. Kinashi, - and O. Nimi. 1994. Cloning and nucleotide sequence of a hsp70 gene form Streptomyces griseus. J. Ferment. Bioeng. 77. 461-467. - Hobbs, G., C. M. Frazer, D.C.J. Gardner, F. Flett, and S.G. Oliver. 1990. Pigment antibiotic production by Streptomyces coelicalor A3(2). kinetics and the influence of nutrients. J. Gen. Microbiol. 136, 2291-2296. - 13 Hong, S.-K., M. Kito, T. Beppu, and S. Horinouchi. 1991. Phosphorylation of the AfsR product, a global regulatory protein for secondary-metabolite formation in *Strep*tomyces coelicolor A3(2). J. Bacteriol. 173, 2311-2318. - Hopwood D.A., M. J. Bibb, K.F. Chater, T. Kieser, C.J. Bruton, H.M. Kieser, D.J. Lydiate, C.P. Smith, J.M. Ward, and H. Schrempf. 1985. Genetic manipulation in Streptomyces. A laboratory Manual. John Innes Foundation, Norwich, UK. - Hunter, I.S. 1995. Gene cloning in Streptomyces. P. 19-44, In Glover D.M. (ed.), Gene cloning volume; A practical approach. 2nd ed, IRL Press, Oxford, UK. - Ishizuka, H., S. Horinouchi, H.M. Kieser, D.A. Hopwood, and T. Beppu. 1992. A putative two-component regulatory system involved in secondary metabolism in Streptomyces spp. J. Bacteriol. 174, 7585-7594. - Liao, X, L.C. Vining, and J.L. Doull. 1995. Physiologocal control of trophophase-idiophase separation in streptomycetes cultures producing secondary metabolites. Can. J. Microbiol. 41, 309-315. - Martin, J.F., and P. Liras. 1989. Organization and expression of genes involved in the biosynthesis of antibiotics and other secondary metabolites *Annu. Rev. Microbiol.* 43, 173-206. - Matsumoto, A., S.-K. Hong, H. Ishizuka, S. Horinouchi, and T. Beppu. 1994. Phosphorylation of the AfsR protein involved in secondary metabolism in *Streptomyces* species by a eukaryotic-type protein kinase. *Gene* 146, 47-56. - Narva, K.E., and J.S. Feitelson. 1990. Nucleotide sequence and transcriptional analysis of the redD locus of Streptomyces coelicolor A3(2). J. Bacteriol. 172, 326-333. - Pearson, W.R., and D.J. Lipman. 1988. Improved tools for biological sequence comparison. *Proc. Natl. Acad. Sci.* USA 85, 2444-2448. - 22. Romero, N.M., and R.P. Mellado. 1995. Activation of the actinorhodin biosynthetic pathway in *Streptomyces lividans. FEMS Microbiol. Lett.* 127, 79-84. - 23. Sambrook, J., E.F. Fritch, and T. Maniatis. 1989. Molecular Cloning: A Laboratory manual. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY, USA. - Sanger, F., S. Nicklen, and A.R. Coulson. 1977. DNA sequencing with chain-terminating inhibitors. Proc. Natl. Acad. Sci. USA 74, 5463-6467. - Scheu, A.-K., E. Mart nez, J. Soliveri, and F. Malpartida. 1997. abaB, a putative regulator for secondary metabolism in Streptomyces. FEMS Microbiol. Lett. 147, 29-36. - 26. Seno, E.T., and R.H. Baltz. 1989. Structural organization and regulation of antibiotic biosynthesis and resistance genes in actinomycetes, pp. 1-48, In S. Shapiro (ed.), Regulation of secondary metabolism in Actinomycetes. Chemical Rubber Co., Boca Raton, Fla. - 27 Stock, J.B., A.J. Ninfa, and A.M. Stock. 1989. Protein 110 Kwon et al. J Microbiol. phosphorylation and regulation of adaptive responses in bacteria. *Microbiol. Rev.* **53**, 450-490. - Takano, E., H.C. Gramajo, E. Strauch, N. Andres, J. White, and M.J. Bibb. 1992. Transcriptional regulation of the redD transcriptional activator gene accounts for growth-phase dependent production of the antibiotic undecylprodigiosin in Streptomyces coelicolor A3(2), Mol. Microbiol. 6: 2797-2804. - Thompson, C.J., T. Kieser, J.M. Ward, and D.A. Hopwood. 1982. Physical analysis of antibiotic resistance genes from *Streptomyces* and their use in vector construction. *Gene* 20, 51-62. - 30. Umeyama, T., and Y. Tanabe, B.D. Aigle, S. Horinouchi. 1996. Expression of the Streptomyces coelicolor A3(2) ptpA gene encoding a phosphotyrosine protein phosphatase leads to overproduction of secondary metabolites in S. lividans. FEMS Microbiol lett 144, 177-184. - Vara, J.A., M. Lewandowska-Skarbek, Y.G. Wang, S. Donadio, and C.R. Hutchinson. 1989. Cloning of genes governing the deoxysugar portion of the erythromycin biosynthetic pathway in Saccharopolyspora erythraea (Streptomyces erythraes). J. Bacteriol. 171, 5872-5811. - 32. Yanisch-Perron, C., J. Vieira, and J. Messing. 1985. Improved M13 phage cloning vectors and host strains: nucleotide sequences of the M13mp18 and pUC19 vectors. *Gene* 33, 103-119. - 33. **White, J., and M. Bibb.** 1997. *bldA* dependence of undecylprodigiosin production in *Streptomyces coelicolor* A3(2) involves a pathway-specific regulatory cascade. *J. Bacteriol.* **179**, 627-633. - 34. Wootton, J.C., and S. Federhen. 1996. Analysis of compositionally biased regions in sequence databases. *Methods Enzymol.* **266**, 554-571.