• Title/Summary/Keyword: heterojunction

Search Result 445, Processing Time 0.029 seconds

A study on the electrical characteristics of CdZnS/CdTe heterojunction (CdZnS/CdTe 이종접합의 전기적 특성에 관한 연구)

  • Lee, Jae-Hyeong
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.14 no.7
    • /
    • pp.1647-1652
    • /
    • 2010
  • A CdS film has been used as a window layer in CdTe and Cu(In,Ga)$Se_2$ thin films solar cell. Partial substitution of Zn for Cd increases the photocurrent and the open-circuit voltage by providing a match in the electron affinities of the two materials and the higher band gap. In this paper, CdZnS/CdTe and CdS/CdTe heterojunctions were fabricated and the electrical characteristics were investigated. Current-voltage-temperature measurements showed that the current transport for CdS/CdTe heterojunction was controlled by both tunneling and interface recombination. However, CdZnS/CdTe heterojunction displayed different current transport mechanism with the operating temperature. For above room temperature, the current transport of device was generation/recombination in the depletion region and was the leakage current and/or tunneling in the range below room temperature.

Dependence of the Heterojunction Diode Characteristics of ZnO/ZnO/p-Si(111) on the Buffer Layer Thickness (버퍼막 두께에 따른 ZnO/ZnO/p-Si(111) 이종접합 다이오드 특성 평가)

  • Heo, Joo-Hoe;Ryu, Hyuk-Hyun;Lee, Jong-Hoon
    • Korean Journal of Materials Research
    • /
    • v.21 no.1
    • /
    • pp.34-38
    • /
    • 2011
  • In this study, the effects of an annealed buffer layer with different thickness on heterojunction diodes based on the ZnO/ZnO/p-Si(111) systems were reported. The effects of an annealed buffer layer with different thickness on the structural, optical, and electrical properties of zinc oxide (ZnO) films on p-Si(111) were also studied. Before zinc oxide (ZnO) deposition, different thicknesses of ZnO buffer layer, 10 nm, 30 nm, 50 nm and 70 nm, were grown on p-Si(111) substrates using a radio-frequency sputtering system; samples were subsequently annealed at $700^{\circ}C$ for 10 minutes in $N_2$ in a horizontal thermal furnace. Zinc oxide (ZnO) films with a width of 280nm were also deposited using a radio-frequency sputtering system on the annealed ZnO/p-Si (111) substrates at room temperature; samples were subsequently annealed at $700^{\circ}C$ for 30 minutes in $N_2$. In this experiment, the structural and optical properties of ZnO thin films were studied by XRD (X-ray diffraction), and room temperature PL (photoluminescence) measurements, respectively. Current-voltage (I-V) characteristics were measured with a semiconductor parameter analyzer. The thermal tensile stress was found to decrease with increasing buffer layer thickness. Among the ZnO/ZnO/p-Si(111) diodes fabricated in this study, the sample that was formed with the condition of a 50 nm thick ZnO buffer layer showed a strong c-axis preferred orientation and I-V characteristics suitable for a heterojunction diode.

Synthesis and Characterization of Thiophene-Based Copolymers Containing Urethane and Alkyl Functional Side Chains for Hybrid Bulk Heterojunction Photovoltaic Cell Applications

  • Im, Min-Joung;Kim, Chul-Hyun;Song, Myung-Kwan;Park, Jin-Su;Lee, Jae-Wook;Gal, Yeong-Soon;Lee, Jun-Hee;Jin, Sung-Ho
    • Bulletin of the Korean Chemical Society
    • /
    • v.32 no.2
    • /
    • pp.559-565
    • /
    • 2011
  • The following noble series of statistical copolymers, poly[(2-(3-thienyl)ethanol n-butoxycarbonylmethylurethane)-co-3-hexylthiophene] (PURET-co-P3HT), were synthesized by the chemical dehydrogenation method using anhydrous $FeCl_3$. The structure and electro-optical properties of these copolymers were characterized using $^1H$-NMR, UV-visible spectroscopy, elemental analysis, GPC, DSC, TGA, photoluminescence (PL), and cyclic voltammetry (CV). The statistical copolymers, PURET-co-P3HT (1:0, 2:1, 1:1, 1:2, 1:3), were soluble in common organic solvents and easily spin coated onto indium-tin oxide (ITO) coated glass substrates. Hybrid bulk heterojunction photovoltaic cells with an ITO/G-PEDOT/PURET-co-P3HT:PCBM:Ag nanowires/$TiO_x$/Al configuration were fabricated, and the photovoltaic cells using PURET-co-P3HT (1:2) showed the best photovoltaic performance compared with those using PURET-co-P3HT (1:0, 2:1, 1:1, 1:3). The optimal hybrid bulk heterojunction photovoltaic cell exhibits a power conversion efficiency (PCE) of 1.58% ($V_{oc}$ = 0.82 V, $J_{sc}$ = 5.58, FF = 0.35) with PURET-co-P3HT (1:2) measured by using an AM 1.5 G irradiation (100 mW/$cm^2$) on an Oriel Xenon solar simulator (Oriel 300 W).

Changes in Interface Properties of TCO/a-Si:H Layer by Zn Buffer Layer in Silicon Heterojunction Solar Cells (실리콘 이종접합 태양전지의 Zn 확산방지층에 의한 TCO/a-Si:H 층간의 계면특성 변화)

  • Tark, Sung-Ju;Son, Chang-Sik;Kim, Dong-Hwan
    • Korean Journal of Materials Research
    • /
    • v.21 no.6
    • /
    • pp.341-346
    • /
    • 2011
  • In this study, we inserted a Zn buffer layer into a AZO/p-type a-si:H layer interface in order to lower the contact resistance of the interface. For the Zn layer, the deposition was conducted at 5 nm, 7 nm and 10 nm using the rf-magnetron sputtering method. The results were compared to that of the AZO film to discuss the possibility of the Zn layer being used as a transparent conductive oxide thin film for application in the silicon heterojunction solar cell. We used the rf-magnetron sputtering method to fabricate Al 2 wt.% of Al-doped ZnO (AZO) film as a transparent conductive oxide (TCO). We analyzed the electro-optical properties of the ZnO as well as the interface properties of the AZO/p-type a-Si:H layer. After inserting a buffer layer into the AZO/p-type a-Si:H layers to enhance the interface properties, we measured the contact resistance of the layers using a CTLM (circular transmission line model) pattern, the depth profile of the layers using AES (auger electron spectroscopy), and the changes in the properties of the AZO thin film through heat treatment. We investigated the effects of the interface properties of the AZO/p-type a-Si:H layer on the characteristics of silicon heterojunction solar cells and the way to improve the interface properties. When depositing AZO thin film on a-Si layer, oxygen atoms are diffused from the AZO thin film towards the a-Si layer. Thus, the characteristics of the solar cells deteriorate due to the created oxide film. While a diffusion of Zn occurs toward the a-Si in the case of AZO used as TCO, the diffusion of In occurs toward a-Si in the case of ITO used as TCO.

The a-Si:H/poly-Si Heterojunction Solar Cells

  • Kim, Sang-Su;Kim, do-Young;Lim, Dong-Gun;Junsin Yi;Lee, Jae-Choon;Lim, Koeng-Su
    • Journal of Electrical Engineering and information Science
    • /
    • v.2 no.5
    • /
    • pp.65-71
    • /
    • 1997
  • We present heterojunction solar cells with a structure of metal/a-Si:H(n-i-p)/poly-Si(n-p)/metal for the terrestrial applications. This cell consists fo two component cells: a top n-i-p junction a-Si:Hi cell with wide-bandgap 1.8eV and a bottom n-p junction poly-Si cell with narrow-bandgap 1.1eV. The efficiency influencing factors of the solar cell were investigated in terms of simulation an experiment. Three main topics of the investigated study were the bottom cell with n-p junction poly-Si, the top a-Si:H cell with n-i-p junction, and the interface layer effects of heterojunction cell. The efficiency of bottom cell was improved with a pretreatment temperature of 900$^{\circ}C$, surface polishing, emitter thickness of 0.43$\mu\textrm{m}$, top Yb metal, and grid finger shading of 7% coverage. The process optimized cell showed a conversion efficiency about 16%. Top cell was grown by suing a photo-CVD system which gave an ion damage free and good p/i-a-Si:H layer interface. The heterojunction interface effect was examined with three different surface states; a chemical passivation, thermal oxide passivation, and Yb metal. the oxide passivated cell exhibited the higher photocurrent generation and better spectral response.

  • PDF

Rectifying and Nitrogen Monoxide Gas Sensing Properties of a Spin-Coated ZnO/CuO Heterojunction (스핀코팅법으로 제작한 산화아연/산화구리 이종접합의 정류 및 일산화질소 가스 감지 특성)

  • Hwang, Hyeonjeong;Kim, Hyojin
    • Korean Journal of Materials Research
    • /
    • v.26 no.2
    • /
    • pp.84-89
    • /
    • 2016
  • We present the rectifying and nitrogen monoxide (NO) gas sensing properties of an oxide semiconductor heterostructure composed of n-type zinc oxide (ZnO) and p-type copper oxide thin layers. A CuO thin layer was first formed on an indium-tin-oxide-coated glass substrate by sol-gel spin coating method using copper acetate monohydrate and diethanolamine as precursors; then, to form a p-n oxide heterostructure, a ZnO thin layer was spin-coated on the CuO layer using copper zinc dihydrate and diethanolamine. The crystalline structures and microstructures of the heterojunction materials were examined using X-ray diffraction and scanning electron microscopy. The observed current-voltage characteristics of the p-n oxide heterostructure showed a non-linear diode-like rectifying behavior at various temperatures ranging from room temperature to $200^{\circ}C$. When the spin-coated ZnO/CuO heterojunction was exposed to the acceptor gas NO in dry air, a significant increase in the forward diode current of the p-n junction was observed. It was found that the NO gas response of the ZnO/CuO heterostructure exhibited a maximum value at an operating temperature as low as $100^{\circ}C$ and increased gradually with increasing of the NO gas concentration up to 30 ppm. The experimental results indicate that the spin-coated ZnO/CuO heterojunction structure has significant potential applications for gas sensors and other oxide electronics.

Fabrication and performance evaluation of ultraviolet photodetector based on organic /inorganic heterojunction

  • Abdel-Khalek, H.;El-Samahi, M.I.;Salam, Mohamed Abd-El;El-Mahalawy, Ahmed M.
    • Current Applied Physics
    • /
    • v.18 no.12
    • /
    • pp.1496-1506
    • /
    • 2018
  • Organic/inorganic ultraviolet photodetector was fabricated using thermal evaporation technique. Organic/inorganic heterojunction based on thermally evaporated copper (II) acetylacetonate thin film of thickness 200 nm deposited on an n-type silicon substrate is introduced. I-V characteristics of the fabricated heterojunction were investigated under UV illumination of intensity $65mW/cm^2$. The diode parameters such as ideality factor, n, barrier height, ${\Phi}_B$, and reverse saturation current, $I_s$, were determined using thermionic emission theory. The series resistance of the fabricated diode was determined using modified Nord's method. The estimated values of series resistance and barrier height of the diode were about $0.33K{\Omega}$ and 0.72 eV, respectively. The fabricated photodetector exhibited a responsivity and specific detectivity about 9 mA/W and $4.6{\times}10^9$ Jones, respectively. The response behavior of the fabricated photodetector was analyzed through ON-OFF switching behavior. The estimated values of rise and fall time of the present architecture under UV illumination were about 199 ms and 154 ms, respectively. Finally, enhancing the photoresponsivity of the fabricated photodetector, post-deposition plasma treatment process was employed. A remarkable modification of the device performance was noticed as a result of plasma treatment. These modifications are representative in a decrease of series resistance and an increase of photoresponsivity and specific detectivity. The process of plasma treatment achieved an increment of external quantum efficiency from 5.53% to 8.34% at -3.5 V under UV illumination.

Initial Growth Mode and Nanostructure of Bulk Heterojunction Layers in Planar Type Metal Pthanlocyanine Molecules

  • Kim, Hyo-Jung;Kima, Ji-Whan;Lee, Hyun-Hwi;Lee, Byeon-Du;Kim, Jang-Joo
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.08a
    • /
    • pp.162-162
    • /
    • 2012
  • ZnPc and CuPc molecules stacked similar way in the film, but showed different growth modes in thermal evaporation. The distribution of CuPc crystals did not change by the film thickness, whereas the distribution of ZnPc became random as the increase of the film thickness. The disc type nanograins of CuPc were quite regularly distributed at the initial growth regime and the regular distribution of nanograins was kept during the film growth. On the other hand, ZnPc consisted in ellipsoid shaped nanograins and the distribution of nanograins was not regular in the initial growth regime. The irregular distribution of nanograins changed to the regular mode at the later growth regime by showing structure factor in GISAXS measurement. The different initial nanograin distribution in ZnPc and CuPc was related to the different nanostructure in the mixed layer with C60 to form the bulk heterojunction.

  • PDF

Effect of cleaning process and surface morphology of silicon wafer for surface passivation enhancement of a-Si/c-Si heterojunction solar cells (실리콘 기판 습식 세정 및 표면 형상에 따른 a-Si:H/c-Si 이종접합 태양전지 패시배이션 특성)

  • Song, JunYong;Jeong, Daeyoung;Kim, Chan Seok;Park, Sang Hyun;Cho, Jun-Sik;Yun, Kyounghun;Song, Jinsoo;Lee, JeongChul
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2010.06a
    • /
    • pp.99.2-99.2
    • /
    • 2010
  • This paper investigates the dependence of a-Si:H/c-Si passivation and heterojunction solar cell performances on various cleaning processes of silicon wafer and surface morphology. It is observed that passivation quality of a-Si:H thin-films on c-Si wafer highly depends on wafer surface conditions. The MCLT(Minority carrier life time) of wafer incorporating intrinsic (i) a-Si:H as a passivation layer shows sensitive variation with cleaning process and surface morpholgy. By applying improved cleaning processes and surface morphology we can obtain the MCLT of $200{\mu}sec$ after H-termination and above 1.5msec after i a-Si:H thin film deposition, which has implied open circuit voltage of 0.720V.

  • PDF

Normally-Off Operation of AlGaN/GaN Heterojunction Field-Effect Transistor with Clamping Diode

  • Han, Sang-Woo;Park, Sung-Hoon;Kim, Hyun-Seop;Lim, Jongtae;Cho, Chun-Hyung;Cha, Ho-Young
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.16 no.2
    • /
    • pp.221-225
    • /
    • 2016
  • This paper reports a new method to enable the normally-off operation of AlGaN/GaN heterojunction field-effect transistors (HFETs). A capacitor was connected to the gate input node of a normally-on AlGaN/GaN HFET with a Schottky gate where the Schottky gate acted as a clamping diode. The combination of the capacitor and Schottky gate functioned as a clamp circuit to downshift the input signal to enable the normally-off operation. The normally-off operation with a virtual threshold voltage of 5.3 V was successfully demonstrated with excellent dynamic switching characteristics.