• 제목/요약/키워드: heme oxygenase-1

검색결과 349건 처리시간 0.033초

Effects of Resveratrol and trans-3,5,4'-Trimethoxystilbene on Glutamate-Induced Cytotoxicity, Heme Oxygenase-1, and Sirtuin 1 in HT22 Neuronal Cells

  • Kim, Dae-Won;Kim, Young-Mi;Kang, Sung-Don;Han, Young-Min;Pae, Hyun-Ock
    • Biomolecules & Therapeutics
    • /
    • 제20권3호
    • /
    • pp.306-312
    • /
    • 2012
  • Resveratrol (trans-3,5,4'-trihydroxystilbene) has received considerable attention recently for the potential neuroprotective effects in neurodegenerative disorders where heme oxygenase-1 (HO-1) and sirtuin 1 (SIRT1) represent promising therapeutic targets. Resveratrol has been known to increase HO-1 expression and SIRT1 activity. In this study, the effects of resveratrol and trans-3,5,4'-trimethoxystilbene (TMS), a resveratrol derivative, on cytotoxicity caused by glutamate-induced oxidative stress, HO-1 expression, and SIRT1 activation have been investigated by using murine hippocampal HT22 cells, which have been widely used as an in vitro model for investigating glutamate-induced neurotoxicity. Resveratrol protected HT22 neuronal cells from glutamate-induced cytotoxicity and increased HO-1 expression as well as SIRT1 activity in a concentration-dependent manner. Cytoprotection afforded by resveratrol was partially reversed by the specific inhibition of HO-1 expression by HO-1 small interfering RNA and the nonspecific blockage of HO-1 activity by tin protoporphyrin IX, but not by SIRT1 inhibitors. Surprisingly, TMS, a resveratrol derivative with methoxyl groups in lieu of the hydroxyl groups, and trans-stilbene, a non-hydroxylated analog, failed to protect HT22 cells from glutamate-induced cytotoxicity and to increase HO-1 expression and SIRT1 activity. Taken together, our findings suggest that the cytoprotective effect of resveratrol was at least in part associated with HO-1 expression but not with SIRT1 activation and, importantly, that the presence of hydroxyl groups on the benzene rings of resveratrol appears to be necessary for cytoprotection against glutamate-induced oxidative stress, HO-1 expression, and SIRT1 activation in HT22 neuronal cells.

TI-I-174, a Synthetic Chalcone Derivative, Suppresses Nitric Oxide Production in Murine Macrophages via Heme Oxygenase-1 Induction and Inhibition of AP-1

  • Kim, Mi Jin;Kadayat, Taraman;Kim, Da Eun;Lee, Eung-Seok;Park, Pil-Hoon
    • Biomolecules & Therapeutics
    • /
    • 제22권5호
    • /
    • pp.390-399
    • /
    • 2014
  • Chalcones (1,3-diaryl-2-propen-1-ones), a flavonoid subfamily, are widely known for their anti-inflammatory properties. Propenone moiety in chalcones is known to play an important role in generating biological responses by chalcones. In the present study, we synthesized chalcone derivatives structurally modified in propenone moiety and examined inhibitory effect on nitric oxide (NO) production and its potential mechanisms. Among the chalcone derivatives used for this study, TI-I-174 (3-(2-Hydroxyphenyl)-1-(thiophen-3-yl)prop-2-en-1-one) most potently inhibited lipopolysaccharide (LPS)-stimulated nitrite production in RAW 264.7 macrophages. TI-I-174 treatment also markedly inhibited inducible nitric oxide synthase (iNOS) expression. However, TI-I-174 did not significantly affect production of IL-6, cyclooxygenase-2 (COX-2) and tumor necrosis factor-${\alpha}$ (TNF-${\alpha}$), implying that TI-I-174 inhibits production of inflammatory mediators in a selective manner. Treatment of macrophages with TI-I-174 significantly inhibited transcriptional activity of activator protein-1 (AP-1) as determined by luciferase reporter gene assay, whereas nuclear factor-${\kappa}B$ (NF-${\kappa}B$) activity was not affected by TI-I-1744. In addition, TI-I-174 significantly inhibited activation of c-Jun-N-Terminal kinase (JNK) without affecting ERK1/2 and p38MAPK, indicating that down-regulation of iNOS gene expression by TI-I-174 is mainly attributed by blockade of JNK/AP-1 activation. We also demonstrated that TI-I-174 treatment led to an increase in heme oxygenase-1 (HO-1) expression both at mRNA and protein level. Transfection of siRNA targeting HO-1 reversed TI-I-174-mediated inhibition of nitrite production. Taken together, these results indicate that TI-I-174 suppresses NO production in LPS-stimulated RAW 264.7 macrophages via induction of HO-1 and blockade of AP-1 activation.

Delivery of Hypoxia Inducible Heme Oxygenase-1 Gene Using Dexamethasone Conjugated Polyethylenimine for Protection of Cardiomyocytes under Hypoxia

  • Kim, Hyun-Jung;Kim, Hyun-Ah;Choi, Joon-Sig;Lee, Min-Hyung
    • Bulletin of the Korean Chemical Society
    • /
    • 제30권4호
    • /
    • pp.897-901
    • /
    • 2009
  • Heme oxygenase-1 (HO-1) is an anti-inflammatory and anti-apoptotic protein and has been applied to various gene therapy researches. However, constitutive expression of HO-1 may induce deleterious side effects. In this research, hypoxia inducible HO-1 expression plasmid, pEpo-SV-HO-1, was constructed with the erythropoietin (epo) enhancer and simian virus 40 (SV40) promoter to avoid these unwanted side effects. Dexamethasone conjugated polyethylenimine (PEI-Dexa) was used as a gene carrier. It was previously reported that dexamethasone protected cardiomyocytes from apoptosis under hypoxia. In this research, PEI-Dexa reduced the caspase-3 level in hypoxic H9C2 cardiomyocytes as a derivative of dexamethasone, suggesting that PEI-Dexa is an anti-apoptotic reagent as well as a gene carrier. pEpo-SV-HO-1 was transfected to H9C2 cardiomyocytes using PEI-Dexa and the cells were incubated under normoxia or hypoxia. HO-1 expression was induced in the pEpo-SV-HO-1 transfected cells under hypoxia. In addition, cell viability under hypoxia was higher in the pEpo-SV-HO-1 transfected cells than the pEpo-SV-Luc transfected cells. Also, caspase-3 level was reduced in the pEpo-SV-HO-1 transfected cells under hypoxia. In addition to the anti-apoptotic effect of PEI-Dexa, hypoxia inducible HO-1 expression by pEpo-SVHO- 1 may be helpful to protect cardiomyocytes under hypoxia. Therefore, pEpo-SV-HO-1/PEI-Dexa complex may be useful for ischemic heart disease gene therapy.

Dimethylsulfoxide (DMSO) induces downregulation of heme oxygenase-1 (HO-1) in HL-60 cells: involvement of HO-1 in HL-60 cell differentiation

  • Noh, Eun-Mi;Cho, Dong-Hyu;Lee, Young-Rae;Jeong, Young-Ju;Kim, Jong-Hyeon;Chae, Hee-Suk;Park, Jinny;Jung, Won-Seok;Park, Sung-Joo;Kim, Jong-Suk
    • BMB Reports
    • /
    • 제44권11호
    • /
    • pp.753-757
    • /
    • 2011
  • Heme oxygenase-1 (HO-1), an inducible enzyme with broad tissue expression, is wel1-regulated in response to hematopoietic stress and preserves vascular homeostasis. We investigated the involvement of HO-1 in HL-60 cell differentiation. Dimethyl sulfoxide (DMSO) completely decreased HO-1 expression in a time-dependent manner, but clearly induced HL-60 cell differentiation, as evidenced by a marked increase in CD11b expression. Interestingly, zinc protoporphyrin (ZnPP), a strong inhibitor of HO-1, induced HL-60 cell differentiation. In contrast, treatment with cobalt protoporphyrin (CoPP), an activator of HO-1, decreased CD11b expression. Additionally, ZnPP down-regulated HO-1 protein expression in HL-60 cells, whereas CoPP induced upregulation. These results suggest that HO-1 might have a negative function in DMSO-induced HL-60 cell differentiation. This study provides the first evidence that HO-1 plays an important role in DMSO-induced HL-60 cell differentiation.

Oxymatrine inhibits the pyroptosis in rat insulinoma cells by affecting nuclear factor kappa B and nuclear factor (erythroid-derived 2)-like 2 protein/heme oxygenase-1 pathways

  • Gao, Jingying;Xia, Lixia;Wei, Yuanyuan
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제26권3호
    • /
    • pp.165-174
    • /
    • 2022
  • As the mechanism underlying glucose metabolism regulation by oxymatrine is unclear, this study investigated the effects of oxymatrine on pyroptosis in INS-1 cells. Flow cytometry was employed to examine cell pyroptosis and reactive oxygen species (ROS) production. Cell pyroptosis was also investigated via transmission electron microscopy and lactate dehydrogenase (LDH) release. Protein levels were detected using western blotting and interleukin (IL)-1β and IL-18 secretion by enzyme-linked immunosorbent assay. The caspase-1 activity and DNA-binding activity of nuclear factor kappa B (NF-κB) and nuclear factor (erythroid-derived 2)-like 2 protein (Nrf2) were also assessed. In the high glucose and high fat-treated INS-1 cells (HG + PA), the caspase-1 activity and LDH content, as well as Nod-like receptor family pyrin domain containing 3, Gsdmd-N, caspase-1, apoptosis-associated speck-like protein containing a CARD, IL-1β, and IL-18 levels were increased. Moreover, P65 protein levels increased in the nucleus but decreased in the cytoplasm. Oxymatrine attenuated these effects and suppressed high glucose and high fat-induced ROS production. The increased levels of nuclear Nrf2 and heme oxygenase-1 (HO-1) in the HG + PA cells were further elevated after oxymatrine treatment, whereas cytoplasmic Nrf2 and Keleh-like ECH-associated protein levels decreased. Additionally, the elevated transcriptional activity of p65 in HG + PA cells was reduced by oxymatrine, whereas that of Nrf2 increased. The results indicate that the inhibition of pyroptosis in INS-1 cells by oxymatrine, a key factor in its glucose metabolism regulation, involves the suppression of the NF-κB pathway and activation of the Nrf2/HO-1 pathway.

Regulation of Nrf2 Mediated Phase II Enzymes by Luteolin in human Hepatocyte

  • Park, Chung Mu
    • 대한의생명과학회지
    • /
    • 제20권2호
    • /
    • pp.56-61
    • /
    • 2014
  • This study attempted to confirm the antioxidative potential of luteolin against tert-butyl hydroperoxide (t-BHP) induced oxidative damage and to investigate its molecular mechanism related to glutathione (GSH)-dependent enzymes in HepG2 cells. Treatment with luteolin resulted in attenuation of t-BHP induced generation of reactive oxygen species (ROS) and oxidative stress-mediated cell death. In addition, accelerated expression of GSH-dependent antioxidative enzymes, glutathione peroxidase (GPx) and glutathione reductase (GR), and heme oxygenase (HO)-1, as well as strengthened GSH content was induced by treatment with luteolin, which was in accordance with increased nuclear translocation of nuclear factor-erythroid 2 p45-related factor 2 (Nrf2), a transcription factor for phase 2 enzymes, in a dose-dependent manner. These results suggest that the cytoprotective potential of luteolin against oxidative damage can be attributed to fortified GSH-mediated antioxidative pathway and HO-1 expression through regulation of Nrf2 in HepG2 cells.

Upregulation of heme oxygenase-1 by ginsenoside Ro attenuates lipopolysaccharide-induced inflammation in macrophage cells

  • Kim, Sokho;Oh, Myung-Hoon;Kim, Bum-Seok;Kim, Won-Il;Cho, Ho-Seong;Park, Byoung-Yong;Park, Chul;Shin, Gee-Wook;Kwon, Jungkee
    • Journal of Ginseng Research
    • /
    • 제39권4호
    • /
    • pp.365-370
    • /
    • 2015
  • Background: The beneficial effects of ginsenoside species have been well demonstrated in a number of studies. However, the function of ginsenoside Ro (GRo), an oleanane-type saponin, has not been sufficiently investigated. Thus, the aim of the present study was to investigate the anti-inflammatory effects of GRo in vitro using the Raw 264.7 mouse macrophage cell line treated with lipopolysaccharide (LPS), and to clarify the possible mechanism of GRo involving heme oxygenase-1 (HO-1), which itself plays a critical role in self-defense in the presence of inflammatory stress. Methods: Raw 264.7 cells were pretreated with GRo (up to $200{\mu}M$) for 1 h before treatment with 1 mg/mL LPS, and both cell viability and inflammatory markers involving HO-1 were evaluated. Results: GRo significantly increased cell viability in a dose dependent manner following treatment with LPS, and decreased levels of reactive oxygen species and nitric oxide. GRo decreased inflammatory cytokines such as nitric oxide synthase and cyclooxygenase-2 induced by LPS. Moreover, GRo increased the expression of HO-1 in a dose dependent manner. Cotreatment of GRo with tin protoporphyrin IX, a selective inhibitor of HO-1, not only inhibited upregulation of HO-1 induced by GRo, but also reversed the anti-inflammatory effect of GRo in LPS treated Raw 264.7 cells. Conclusion: GRo induces anti-inflammatory effects following treatment with LPS via upregulation of HO-1.

인간 간암세포주 HepG2에서 heme oxygenase-1 발현에 대한 diallyl disulfide의 효과 (Effect of Diallyl Disulfide on Heme Oxygenase-1 Expression in Human Hepatoma Cell Line HepG2)

  • 김강미;이상권;박영철
    • 생명과학회지
    • /
    • 제21권7호
    • /
    • pp.1046-1051
    • /
    • 2011
  • Dially disulfide (DADS)는 마늘의 주요한 유기 황화합물 성분으로서 다양한 약리 작용을 나타낸다. 최근 DADS가 항염증과 항동맥경화 작용뿐만 아니라 암세포의 증식을 억제하고 사멸을 유도한다는 보고가 이어지고 있고, 이에 관련된 연구가 활발히 진행되고 있는 실정이다. 한편, DADS가 세포 내 항산화 인자인 glutathione을 증가시킨다는 연구결과와 세포 내 항산화 효소의 일종인 HO-1의 발현을 직접 유도한다는 결과가 보고되었다. 그래서, 본 연구에서는 논란이 되고 있는 DADS의 세포 내 항산화 효소인 HO-1의 발현에서의 효과 및 그 전사인자들의 작용에 관여하는지를 인간 간암세포주 HepG2에서 조사하였다. 배양 중인 HepG2 세포에서 DADS는 독성이 없는 농도에서 세포의 증식을 크게 억제하였고, 전사인자 Nrf2의 발현을 약하게 유도하였으나 HO-1의 발현에는 영향을 미치지 못하는 것으로 나타났다. 또한, DADS는 HO-1 유도제인 CoPP와 hemin에 의해 자극된 HepG2 세포의 HO-1 발현의 증가를 단백질 수준에서 강력하게 억제시키는 것으로 나타났다. 그러나 DADS는 CoPP에 의한 HO-1 유전자의 mRNA 수준의 전사에는 억제 효과를 보이지 않았으며, 또한 Nrf2와 small Maf의 발현을 증가시키고 핵 내에 축적시키는 것으로 나타났다. 이를 종합해 볼 때 DADS는 단독으로 HO-1 발현을 유도하지 못하고, HO-1 유도제에 의한 HO-1 유전자의 발현과정에서는 전사단계가 아닌 번역단계에서 역할을 함으로써 HO-1의 단백질 합성을 억제하는 것으로 보인다. 결론적으로, 항산화 효소인 HO-1의 활성은 외부 자극으로부터 세포를 보호하고 사멸에 저항하게 하는데, DADS는 인간 간암세포주 HepG2에서 이 효소의 발현을 억제함으로써 항암제 및 redox 변화에 따른 암세포주의 성장을 억제하고 세포사멸을 촉진시킬 수 있다고 여겨진다.

Cytoprotective Effects of Sulfuretin from Rhus verniciflua through Regulating of Heme Oxygenase-1 in Human Dental Pulp Cells

  • Lee, Dong-Sung;Kim, Kyoung-Su;Ko, Wonmin;Keo, Samell;Jeong, Gil-Saeng;Oh, Hyuncheol;Kim, Youn-Chul
    • Natural Product Sciences
    • /
    • 제19권1호
    • /
    • pp.54-60
    • /
    • 2013
  • Rhus verniciflua Stokes (Anacadiaceae) is a plant that is native to East Asian countries, such as Korea, China, and Japan, and it has been found to exert various biological activities including antioxidative, anti-aggregatory, anti-inflammatory, anti-mutagenic, and apoptotic effects. Sulfuretin is one of the major flavonoid component isolated from the heartwood of R. verniciflua. Reactive oxygen species (ROS), produced via dental adhesive bleaching agents and pulpal disease, can cause oxidative stress. In the present study, we isolated sulfuretin from R. verniciflua and demonstrated that sulfuretin possesses cytoprotective effects against hydrogen peroxide ($H_2O_2$)-induced dental cell death. $H_2O_2$ is a representative ROS and causes cell death through necrosis in human dental pulp (HDP) cells. $H_2O_2$-induced cytotoxicity and production of ROS were blocked in the presence of sulfuretin, and these effects were dose dependent. Sulfuretin also increased heme oxygenase-1 (HO-1) protein expression. In addition, to determine whether sulfuretin-induced HO-1 expression mediated this cytoprotective effect, HDP cells were cotreated with sulfuretin in the absence or presence of SnPP, an inhibitor of HO activity. Sulfuretin-dependent HO-1 expression was required for suppression of $H_2O_2$-induced HDP cell death and ROS generation. These results indicate that sulfuretin-dependent HO-1 expression was required for the inhibition of $H_2O_2$-induced cell death and ROS generation. In addition, sulfuretin may be used to prevent functional dental cell death and thus may be useful as a pulpal disease agent.

고삼 (苦蔘, Sophorae Radix) 70% 에탄올 추출물의 비수용성 분획물의 Heme Oxygenase-1 발현을 통한 뇌세포 보호 작용 (Neuroprotective Effect of the Water-insoluble fraction of Roots of Sophora flavescens 70% Ethanolic Extract on Glutamate-Induced Oxidative Damage in Mouse Hippocampal HT22 Cells)

  • 이영숙
    • 생약학회지
    • /
    • 제42권3호
    • /
    • pp.276-281
    • /
    • 2011
  • Oxidative stress or the accumulation of reactive oxygen species (ROS) leads neuronal cellular death and dysfunction, and it contributes to neuronal degenerative disease such as Alzheimer's disease, Parkinson's disease and stroke. Glutamate-induced oxidative injury contributes to neuronal degeneration in many central nervous system (CNS) diseases, such as epilepsy and ischemia. Heme oxygenase-1 (HO-1) enzyme plays an important role of cellular antioxidant system against oxidant injury. The expression of HO-1 has cytoprotective effects in glutamate-induced oxidative cytotoxicity in HT22 cells. The induction of HO-1 is primarily regulated at the transcriptional level, and its induction by various inducers is related to the nuclear transcription factor-E2-related factor 2 (Nrf2). Nrf2 is a master regulator of the antioxidant response. NNMBS008, the water-insoluble fraction of the 70% EtOH extract of roots of Sophora flavescens, showed dominant neuroprotective effects on glutamate-induced neurotoxicity in mouse hippocampal HT22 cells by induced the expression of HO-1 and increased HO activity. In mouse hippocampal HT22 cells, NNMBS008 makes the nuclear accumulation of Nrf2 pathway. In conclusion, the waterinsoluble fraction of the 70% EtOH extract of roots of S. flavescens (NNMBS008) significantly protect glutamate-induced oxidative damage by induction of HO-1 via Nrf2 pathway in mouse hippocampal HT22 cells. These results suggest that these extracts could be the effective candidates for the treatment of ROS-related neurological diseases.