• 제목/요약/키워드: hematopoietic differentiation

검색결과 103건 처리시간 0.027초

Molecular Involvement and Prognostic Importance of Fms-like Tyrosine Kinase 3 in Acute Myeloid Leukemia

  • Shahab, Sadaf;Shamsi, Tahir S.;Ahmed, Nuzhat
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제13권9호
    • /
    • pp.4215-4220
    • /
    • 2012
  • AML (Acute myeloid leukemia) is a form of blood cancer where growth of myeloid cells occurs in the bone marrow. The prognosis is poor in general for many reasons. One is the presence of leukaemia-specific recognition markers such as FLT3 (fms-like tyrosine kinase 3). Another name of FLT3 is stem cell tyrosine kinase-1 (STK1), which is known to take part in proliferation, differentiation and apoptosis of hematopoietic cells, usually being present on haemopoietic progenitor cells in the bone marrow. FLT3 act as an independent prognostic factor for AML. Although a vast literature is available about the association of FLT3 with AML there still is a need of a brief up to date overview which draw a clear picture about this association and their effect on overall survival.

사람태아 간조직의 형태형성에 관한 연구 (A Study on the Morphogenesis of Human Fetal Hepatic Tissue)

  • 등영건;김동희
    • Applied Microscopy
    • /
    • 제28권3호
    • /
    • pp.283-297
    • /
    • 1998
  • Hemopoiesis and morphogenesis of the human fetal liver through from 10 to 32 weeks of gestation were investigated by light and electron microscopy. The results obtained were as follows. Hemopoiesis of fetal liver tissue was found from 10 to 32 weeks of gestation, but the hemopoiesis was decreased at 32 weeks of gestation. At the 32 weeks of gestation, matured erythrocytes were observed in the sinusoid, and formation of liver cell cord and portal triad were established. Differentiation of hepatic cell was characterized by the increase of amount of cell organelles within cytoplasm, decrease of hemopoietic cell, morphological change of nuclear envelope from folding form to round form during the developmental period. These results suggest that human fetal liver plays a hematopoietic function until bone marrow and spleen play their function, but morphology of liver at 32 weeks of gestation was differed with structure observed in liver of adult.

  • PDF

CD137-CD137 Ligand Interactions in Inflammation

  • Kwon, Byung-Suk
    • IMMUNE NETWORK
    • /
    • 제9권3호
    • /
    • pp.84-89
    • /
    • 2009
  • The main stream of CD137 studies has been directed to the function of CD137 in $CD8^+$ T-cell immunity, including its anti-tumor activity, and paradoxically the immunosuppressive activity of CD137, which proves to be of a great therapeutic potential for animal models of a variety of autoimmune and inflammatory diseases. Recent studies, however, add complexes to the biology of CD137. Accumulating is evidence supporting that there exists a bidirectional signal transduction pathway for the CD137 receptor and its ligand (CD137L). CD137/CD137L interactions are involved in the network of hematopoietic and nonhematopoietic cells in addition to the well characterized antigen-presenting cell-T cell interactions. Signaling through CD137L plays a critical role in the differentiation of myeloid cells and their cellular activities, suggesting that CD137L signals trigger and sustain inflammation. The overall consequence might be that the amplified inflammation by CD137L enhances the T-cell activity together with CD137 signals by upregulating costimulatory molecules, MHC molecules, cell adhesion molecules, cytokines, and chemokines. Solving this outstanding issue is urgent and will have an important clinical implication.

The Role of Lozenge in Drosophila Hematopoiesis

  • Koranteng, Ferdinand;Cha, Nuri;Shin, Mingyu;Shim, Jiwon
    • Molecules and Cells
    • /
    • 제43권2호
    • /
    • pp.114-120
    • /
    • 2020
  • Drosophila hematopoiesis is comparable to mammalian differentiation of myeloid lineages, and therefore, has been a useful model organism in illustrating the molecular and genetic basis for hematopoiesis. Multiple novel regulators and signals have been uncovered using the tools of Drosophila genetics. A Runt domain protein, lozenge, is one of the first players recognized and closely studied in the hematopoietic lineage specification. Here, we explore the role of lozenge in determination of prohemocytes into a special class of hemocyte, namely the crystal cell, and discuss molecules and signals controlling the lozenge function and its implication in immunity and stress response. Given the highly conserved nature of Runt domain in both invertebrates and vertebrates, studies in Drosophila will enlighten our perspectives on Runx-mediated development and pathologies.

Protective effects of Ginsan against Cyclophosphamide-induced immunosuppression in mice

  • Shim, Ji-Young;Ahn, Ji-Yeon;Han, Young-Soo;Jung, In-Sung;Yun, Yeon-Sook;Song, Jie-Young
    • 대한약학회:학술대회논문집
    • /
    • 대한약학회 2003년도 Proceedings of the Convention of the Pharmaceutical Society of Korea Vol.1
    • /
    • pp.206.1-206.1
    • /
    • 2003
  • The immunomodulator Ginsan has been found previously by us to stimulate the secretion of high levels of IL -1. IL -6 and TNF-alpha in irradiated mice. These cytokines are known to induce proliferation and differentiation of hematopoietic progenitor cells from the spleen and bone marrow and to protect mice from DNA-damaging agents. The present studies were evaluated as a cytoprotective agent against toxicity of the alkylating drugs. (omitted)

  • PDF

Intrinsic and Extrinsic Regulation of Hematopoiesis in Drosophila

  • Koranteng, Ferdinand;Cho, Bumsik;Shim, Jiwon
    • Molecules and Cells
    • /
    • 제45권3호
    • /
    • pp.101-108
    • /
    • 2022
  • Drosophila melanogaster lymph gland, the primary site of hematopoiesis, contains myeloid-like progenitor cells that differentiate into functional hemocytes in the circulation of pupae and adults. Fly hemocytes are dynamic and plastic, and they play diverse roles in the innate immune response and wound healing. Various hematopoietic regulators in the lymph gland ensure the developmental and functional balance between progenitors and mature blood cells. In addition, systemic factors, such as nutrient availability and sensory inputs, integrate environmental variabilities to synchronize the blood development in the lymph gland with larval growth, physiology, and immunity. This review examines the intrinsic and extrinsic factors determining the progenitor states during hemocyte development in the lymph gland and provides new insights for further studies that may extend the frontier of our collective knowledge on hematopoiesis and innate immunity.

B 임파구의 분화 (B-cell Differentiation)

  • 양만표;이창우;권종국;장곡천독언
    • 한국임상수의학회지
    • /
    • 제8권1호
    • /
    • pp.1-10
    • /
    • 1991
  • The B-lymphocyte differentiation from committed B-cell progenitors to antibody-secreting cells was discussed. B-cell progenitors derived from hematopoietic stem cells undergo the rearrangement of immunoglobulin(Ig) gene. The earliest cells as B-cell precursors have cytoplasmic Is(${\mu}$ chain). The entire Is molecule is expressed on the surface after synthesis of L chain. The resting B cells(Go stage) stimulated by binding antigen via Ig-receptors are activated(G$_1$ stage) and followed by proliferation(S stage), coupled with further selection(affinity maturation. class switch). The production of antibody against a particular antigen depends on the activation of B cells with surface Is capable of reacting with that antigen. This process does not occur in isolation but is controlled by helper and suppressor T cells and antigen presenting cells(APC). The mechanism of T cell-dependent B-cell response for production of antibody is largely explained by the cell to cell cooperation and soluble helper factors of T cells. 1) The antigen specific B cells and helper T cells are linked by Is-receptors, leading to the delivery of helper signals to the B cells. 2) Helper T cells recognize the processed antigen-derived peptides with the MHC class II molecules(la antigen) and is stimulated to secrete B-cell proliferation and differentiation factors which activate B cells of different antigenic specificity. The two models are shown currently 1) At low antigen concentration, only the antigen-specific B cell binds antigen and presents antigen-derived peptides with la molecules to helper T cells, which are stimulated to secrete cytokines(IL-4, IL-5, etc.) and 2) At high antigen concentration, antigen-derived peptides are presented by specific B cells, by B cells that endocytose the antigens, as well as by APC Cytokines secreted from helper T cells also lead to the activation of B cells and even bystander B cells in the on- vironmment and differentiate them into antibody-secreting plasma cells.

  • PDF

Suppression of HIF-1α by Valproic Acid Sustains Self-Renewal of Mouse Embryonic Stem Cells under Hypoxia In Vitro

  • Lee, Hyo-Jong;Kim, Kyu-Won
    • Biomolecules & Therapeutics
    • /
    • 제20권3호
    • /
    • pp.280-285
    • /
    • 2012
  • The developing embryo naturally experiences relatively low oxygen conditions in vivo. Under in vitro hypoxia, mouse embryonic stem cells (mESCs) lose their self-renewal activity and display an early differentiated morphology mediated by the hypoxia-inducible factor-$1{\alpha}$ (HIF-$1{\alpha}$). Previously, we demonstrated that histone deacetylase (HDAC) is activated by hypoxia and increases the protein stability and transcriptional activity of HIF-$1{\alpha}$ in many human cancer cells. Furthermore HDAC1 and 3 mediate the differentiation of mECSs and hematopoietic stem cells. However, the role of HDACs and their inhibitors in hypoxia-induced early differentiation of mESCs remains largely unknown. Here, we examined the effects of several histone deacetylase inhibitors (HDACIs) on the self-renewal properties of mESCs under hypoxia. Inhibition of HDAC under hypoxia effectively decreased the HIF-$1{\alpha}$ protein levels and substantially improved the expression of the LIF-specific receptor (LIFR) and phosphorylated-STAT3 in mESCs. In particular, valproic acid (VPA), a pan HDACI, showed dramatic changes in HIF-$1{\alpha}$ protein levels and LIFR protein expression levels compared to other HDACIs, including sodium butyrate (SB), trichostatin A (TSA), and apicidin (AP). Importantly, our RT-PCR data and alkaline phosphatase assays indicate that VPA helps to maintain the self-renewal activity of mESCs under hypoxia. Taken together, these results suggest that VPA may block the early differentiation of mESCs under hypoxia via the destabilization of HIF-$1{\alpha}$.

인간 제대혈액에서 유래된 중간엽 줄기세포의 신경 및 콜린성 분화 (Neural and Cholinergic Differentiation of Mesenchymal Stem Cells Derived from the Human Umbilical Cord Blood)

  • 감경윤;강지혜;도병록;김해권;강성구
    • 한국발생생물학회지:발생과생식
    • /
    • 제11권3호
    • /
    • pp.235-243
    • /
    • 2007
  • 인간 제대혈 세포는 조혈모세포, 중간엽 줄기세포와내피전구세포를 풍부하게 포함하고 있다. 인간 제대혈 속의 중간엽 줄기세포는 조혈모세포와는 달리 다능성 줄기세포이며 신경세포로 분화할 수 있는 잠재성을 가지고 있다. 본 연구에서는 세포배양을 통해 제대혈의 중간엽 줄기세포를 신경세포와 콜린성 신경세포로 분화를 유도하였다. 중간엽 줄기세포를 신경세포로 분화시키기 위해 배양액에 dimethyl sulphoxide(DMSO)와 butylated hydroxyanisole(BHA)를 첨가하여 유도하였으며 basic fibroblast growth factor(bFGF), retinoic acid(RA), sonic hedgehog(Shh)를 처리하여 콜린성 신경세포로 분화시켰다. DMSO와 BHA에 처리된 중간엽 줄기세포가 빠르게 신경세포 모양으로 분화하는 것을 관찰하였으며, 이것은 면역조직학적 염색에서 신경세포 특이 표지인 $\beta$-tubulin III, 별아교세포에 대한 특이 표지인 GFAP, 희돌기아교세포에 대한 특이 표지인 Gal-C에 대해 양성반응을 나타내었고, 그 비율은 각각 $32.3{\pm}2.9%$, $11.0{\pm}0.9%,\;9.4{\pm}1.0%$였다. RT-PCR 분석에서 배양 단계에 따라 신경세포에 특이적인 표지 인자가 발현됨을 통해, 중간엽 줄기세포가 신경세포로 분화됨을 확인하였다. 또한, 중간엽 줄기세포에 bFGF, RA, Shh를 처리하여 콜린성 신경세포로 분화시켰을 때, 전체 중간엽 세포 중 $31.3{\pm}3.2%$가 신경세포 특이 표지인 $\beta$-tubulin III에 양성반응을 보였으며 이들 세포 중 $70.0{\pm}7.8%$가 콜린성 신경 특이 표지인 ChAT에 양성반응을 보였고, 이것은 Woodbury 방법에 의한 신경분화의 경우보다 3배 가량 높은 비율로 콜린성 신경의 분화를 유도한 것이다. 이러한 실험 결과들은 인간 제대혈의 중간엽 줄기세포가 콜린성 신경세포로 분화가 가능하고 이러한 잠재성을 가진 제대혈 중간엽 줄기세포는 퇴행성 신경질환에 대한 세포 치료제로서 가능성을 제시한다.

  • PDF

Effect of Cytokines and bFGF on the Osteoclast Differentiation Induced by $1\;{\alpha},25-(OH)_2D_3$ in Primary Murine Bone Marrow Cultures

  • Chae, Han-Jung;Kang, Jang-Sook;Bang, Byung-Gwan;Cho, Seoung-Bum;Han, Jo-Il;Choi, Joo-Young;Kim, Hyung-Min;Chae, Soo-Wan;Kim, Hyung-Ryong
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제3권6호
    • /
    • pp.539-546
    • /
    • 1999
  • Bone is a complex tissue in which resorption and formation continue throughout life. The bone tissue contains various types of cells, of which the bone forming osteoblasts and bone resorbing osteoclasts are mainly responsible for bone remodeling. Periodontal disease represents example of abnormal bone remodeling. Osteoclasts are multinucleated cells present only in bone. It is believed that osteoclast progenitors are hematopoietic origin, and they are recruited from hematopoietic tissues such as bone marrow and circulating blood to bone. Cells present in the osteoclast microenvironment include marrow stromal cells, osteoblasts, macrophages, T-lymphocytes, and marrow cells. These cells produce cytokines that can affect osteoclast formation. In vitro model systems using bone marrow cultures have demonstrated that $IL-l{\beta},\;IL-3,\;TNF-{\alpha},$ bFGF can stimulate the formation of osteoclasts. In contrast, IL-4 inhibits osteoclast formation. Knowledge of cytokines and bFGF that affect osteoclast formation and their capacity to modulate the bone-resorbing process should provide critical insights into normal calcium homeostasis and disorders of bone turnover such as periodontal disease, osteoporosis and Paget's disease.

  • PDF