Browse > Article
http://dx.doi.org/10.4062/biomolther.2012.20.3.280

Suppression of HIF-1α by Valproic Acid Sustains Self-Renewal of Mouse Embryonic Stem Cells under Hypoxia In Vitro  

Lee, Hyo-Jong (College of Pharmacy, Inje University)
Kim, Kyu-Won (Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University)
Publication Information
Biomolecules & Therapeutics / v.20, no.3, 2012 , pp. 280-285 More about this Journal
Abstract
The developing embryo naturally experiences relatively low oxygen conditions in vivo. Under in vitro hypoxia, mouse embryonic stem cells (mESCs) lose their self-renewal activity and display an early differentiated morphology mediated by the hypoxia-inducible factor-$1{\alpha}$ (HIF-$1{\alpha}$). Previously, we demonstrated that histone deacetylase (HDAC) is activated by hypoxia and increases the protein stability and transcriptional activity of HIF-$1{\alpha}$ in many human cancer cells. Furthermore HDAC1 and 3 mediate the differentiation of mECSs and hematopoietic stem cells. However, the role of HDACs and their inhibitors in hypoxia-induced early differentiation of mESCs remains largely unknown. Here, we examined the effects of several histone deacetylase inhibitors (HDACIs) on the self-renewal properties of mESCs under hypoxia. Inhibition of HDAC under hypoxia effectively decreased the HIF-$1{\alpha}$ protein levels and substantially improved the expression of the LIF-specific receptor (LIFR) and phosphorylated-STAT3 in mESCs. In particular, valproic acid (VPA), a pan HDACI, showed dramatic changes in HIF-$1{\alpha}$ protein levels and LIFR protein expression levels compared to other HDACIs, including sodium butyrate (SB), trichostatin A (TSA), and apicidin (AP). Importantly, our RT-PCR data and alkaline phosphatase assays indicate that VPA helps to maintain the self-renewal activity of mESCs under hypoxia. Taken together, these results suggest that VPA may block the early differentiation of mESCs under hypoxia via the destabilization of HIF-$1{\alpha}$.
Keywords
Embryonic stem cell; HDAC; Valproic acid; Hypoxia; Self-renewal; HIF-$1{\alpha}$;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Semenza, G. L. (2001) HIF-1, O(2), and the 3 PHDs: how animal cells signal hypoxia to the nucleus. Cell 107, 1-3.   DOI   ScienceOn
2 Shui, Y. B., Fu, J. J., Garcia, C., Dattilo, L. K., Rajagopal, R., McMillan, S., Mak, G., Holekamp, N. M., Lewis, A. and Beebe, D. C. (2006) Oxygen distribution in the rabbit eye and oxygen consumption by the lens. Invest. Ophthalmol. Vis. Sci. 47, 1571-1580.   DOI   ScienceOn
3 Simon, M. C. and Keith, B. (2008) The role of oxygen availability in embryonic development and stem cell function. Nat. Rev. Mol. Cell Biol. 9, 285-296.   DOI   ScienceOn
4 Tighe, A. P. and Gudas, L. J. (2004) Retinoic acid inhibits leukemia inhibitory factor signaling pathways in mouse embryonic stem cells. J. Cell Physiol. 198, 223-229.   DOI   ScienceOn
5 Yu, J. and Thomson, J. A. (2008) Pluripotent stem cell lines. Genes Dev. 22, 1987-1997.   DOI   ScienceOn
6 Maltepe, E., Krampitz, G. W., Okazaki, K. M., Red-Horse, K., Mak, W., Simon, M. C. and Fisher, S. J. (2005) Hypoxia-inducible factordependent histone deacetylase activity determines stem cell fate in the placenta. Development 132, 3393-3403.   DOI   ScienceOn
7 Masuda, S., Kobayashi, T., Chikuma, M., Nagao, M. and Sasaki, R. (2000) The oviduct produces erythropoietin in an estrogen- and oxygen-dependent manner. Am. J. Physiol. Endocrinol. Metab. 278, E1038-1044.
8 Matsuda, T., Nakamura, T., Nakao, K., Arai, T., Katsuki, M., Heike, T. and Yokota, T. (1999) STAT3 activation is suffi cient to maintain an undifferentiated state of mouse embryonic stem cells. EMBO. J. 18, 4261-4269.   DOI   ScienceOn
9 McCool, K. W., Xu, X., Singer, D. B., Murdoch, F. E. and Fritsch, M. K. (2007) The role of histone acetylation in regulating early gene expression patterns during early embryonic stem cell differentiation. J. Biol. Chem. 282, 6696-6706.
10 Niwa, H., Burdon, T., Chambers, I. and Smith, A. (1998) Self-renewal of pluripotent embryonic stem cells is mediated via activation of STAT3. Genes. Dev. 12, 2048-2060.   DOI   ScienceOn
11 Peyssonnaux, C., Zinkernagel, A. S., Schuepbach, R. A., Rankin, E., Vaulont, S., Haase, V. H., Nizet, V. and Johnson, R. S. (2007) Regulation of iron homeostasis by the hypoxia-inducible transcription factors (HIFs). J. Clin. Invest. 117, 1926-1932.   DOI   ScienceOn
12 Krejci, J., Uhlirova, R., Galiova, G., Kozubek, S., Smigova, J. and Bartova, E. (2009) Genome-wide reduction in H3K9 acetylation during human embryonic stem cell differentiation. J. Cell Physiol. 219, 677-687.   DOI
13 Powers, D. E., Millman, J. R., Huang, R. B. and Colton, C. K. (2008) Effects of oxygen on mouse embryonic stem cell growth, phenotype retention, and cellular energetics. Biotechnol. Bioeng. 101, 241-254.   DOI   ScienceOn
14 Schrenk-Siemens, K., Perez-Alcala, S., Richter, J., Lacroix, E., Rahuel, J., Korte, M., Muller, U., Barde, Y. A. and Bibel, M. (2008) Embryonic stem cell-derived neurons as a cellular system to study gene function: lack of amyloid precursor proteins APP and APLP2 leads to defective synaptic transmission. Stem Cells 26, 2153-2163.   DOI   ScienceOn
15 Kim, S. H., Jeong, J. W., Park, J. A., Lee, J. W., Seo, J. H., Jung, B. K., Bae, M. K. and Kim, K. W. (2007) Regulation of the HIF-1alpha stability by histone deacetylases. Oncol. Rep. 17, 647-651.
16 Land, S. C. (2004) Hochachka's "Hypoxia Defense Strategies" and the development of the pathway for oxygen. Comp. Biochem. Physiol. B. Biochem. Mol. Biol. 139, 415-433.   DOI   ScienceOn
17 Lee, H. J., Jeong, C. H., Cha, J. H. and Kim, K. W. (2010) PKC-delta inhibitors sustain self-renewal of mouse embryonic stem cells under hypoxia in vitro. Exp. Mol. Med. 42, 294-301.   DOI
18 Lee, J. W., Bae, S. H., Jeong, J. W., Kim, S. H. and Kim, K. W. (2004) Hypoxia-inducible factor (HIF-1)alpha: its protein stability and biological functions. Exp. Mol. Med. 36, 1-12.   DOI   ScienceOn
19 Lee, J. W., Park, J. A., Kim, S. H., Seo, J. H., Lim, K. J., Jeong, J. W., Jeong, C. H., Chun, K. H., Lee, S. K., Kwon, Y. G. and Kim, K. W. (2007) Protein kinase C-delta regulates the stability of hypoxiainducible factor-1 alpha under hypoxia. Cancer Sci. 98, 1476-1481.   DOI   ScienceOn
20 Lee, Y. M., Jeong, C. H., Koo, S. Y., Son, M. J., Song, H. S., Bae, S. K., Raleigh, J. A., Chung, H. Y., Yoo, M. A. and Kim, K. W. (2001) Determination of hypoxic region by hypoxia marker in developing mouse embryos in vivo: a possible signal for vessel development. Dev. Dyn. 220, 175-186.   DOI   ScienceOn
21 Li, Z., Wu J. C., Sheikh, A. Y., Kraft, D., Cao, F., Xie, X., Patel, M., Gambhir, S. S., Robbins, R. C., Cooke, J. P. and Wu, J. C. (2007) Differentiation, survival, and function of embryonic stem cell derived endothelial cells for ischemic heart disease. Circulation 116, 146-154.   DOI
22 Evans, M. J. and Kaufman, M. H. (1981) Establishment in culture of pluripotential cells from mouse embryos. Nature 292, 154-156.   DOI   ScienceOn
23 Gassmann, M., Fandrey, J., Bichet, S., Wartenberg, M., Marti, H. H., Bauer, C., Wenger, R. H. and Acker, H. (1996) Oxygen supply and oxygen-dependent gene expression in differentiating embryonic stem cells. Proc. Natl. Acad. Sci. USA 93, 2867-2872.   DOI   ScienceOn
24 Huangfu, D., Maehr, R., Guo, W., Eijkelenboom, A., Snitow, M., Chen, A. E. and Melton, D. A. (2008a) Induction of pluripotent stem cells by defi ned factors is greatly improved by small-molecule compounds. Nat. Biotechnol. 26, 795-797.   DOI
25 Huangfu, D., Osafune, K., Maehr, R., Guo, W., Eijkelenboom, A., Chen, S., Muhlestein, W. and Melton, D. A. (2008b) Induction of pluripotent stem cells from primary human fi broblasts with only Oct4 and Sox2. Nat. Biotechnol. 26, 1269-1275.   DOI
26 Intaglietta, M., Johnson, P. C. and Winslow, R. M. (1996) Microvascular and tissue oxygen distribution. Cardiovasc. Res. 32, 632-643.   DOI
27 Jeong, C. H., Lee, H. J., Cha, J. H., Kim, J. H., Kim, K. R., Kim, J. H., Yoon, D. K. and Kim, K. W. (2007) Hypoxia-inducible factor-1 alpha inhibits self-renewal of mouse embryonic stem cells in Vitro via negative regulation of the leukemia inhibitory factor-STAT3 pathway. J. Biol. Chem. 282, 13672-13679.   DOI   ScienceOn
28 Kim, M. J., Moon, C. H., Kim, M. Y., Kim, M. H., Lee, S. H., Baik, E. J. and Jung, Y. S. (2004) Role of PKC-delta during hypoxia in heartderived H9c2 cells. Jpn. J. Physiol. 54, 405-414.   DOI   ScienceOn
29 Jeong, J. W., Bae, M. K., Ahn, M. Y., Kim, S. H., Sohn, T. K., Bae, M. H., Yoo, M. A., Song, E. J., Lee, K. J. and Kim, K. W. (2002) Regulation and destabilization of HIF-1alpha by ARD1-mediated acetylation. Cell 111, 709-720.   DOI   ScienceOn
30 Karamboulas, C., Swedani, A., Ward, C., Al-Madhoun, A. S., Wilton, S., Boisvenue, S., Ridgeway, A. G. and Skerjanc, I. S. (2006) HDAC activity regulates entry of mesoderm cells into the cardiac muscle lineage. J. Cell Sci. 119, 4305-4314.   DOI
31 Bartova, E., Galiova, G., Krejci, J., Harnicarova, A., Strasak, L. and Kozubek, S. (2008) Epigenome and chromatin structure in human embryonic stem cells undergoing differentiation. Dev. Dyn. 237, 3690-3702.   DOI
32 Bae, S. H., Jeong, J. W., Park, J. A., Kim, S. H., Bea, M. K, Choi, S. J. and Kim, K. W. (2004) Sumoylation increases HIF-1 alpha stability and its transcriptional activity. Biochem. Biophys. Res. Commun. 324, 394-400.   DOI
33 Berra, E., Benizri, E., Ginouvès, A., Volmat, V., Roux, D. and Pouyssegur, J. (2003) HIF prolyl-hydroxylase 2 is the key oxygen sensor setting low steady-state levels of HIF-1alpha in normoxia. EMBO J. 22, 4082-4090.   DOI   ScienceOn
34 Blanchard, F., Kinzie, E., Wang, Y., Duplomb, L., Godard, A., Held, W. A., Asch, B. B. and Baumann, H. (2002) FR901228, an inhibitor of histone deacetylases, increases the cellular responsiveness to IL-6 type cytokines by enhancing the expression of receptor proteins. Oncogene 21, 6264-6277.   DOI
35 Bost, F., Caron, L., Marchetti, I., Dani, C., Le Marchand-Brustel, Y. and Binétruy, B. (2002) Retinoic acid activation of the ERK pathway is required for embryonic stem cell commitment into the adipocyte lineage. Biochem. J. 361, 621-627.   DOI   ScienceOn
36 Balasubramaniyan, V., Boddeke, E., Bakels, R., Küst, B., Kooistra, S., Veneman, A. and Copray, S. (2006) Effects of histone deacetylation inhibition on neuronal differentiation of embryonic mouse neural stem cells. Neuroscience 143, 939-951.   DOI
37 Du, K. L., Chen, M., Li, J., Lepore, J. J., Mericko, P. and Parmacek, M. S. (2004) Megakaryoblastic leukemia factor-1 transduces cytoskeletal signals and induces smooth muscle cell differentiation from undifferentiated embryonic stem cells. J. Biol. Chem. 279, 17578-17586.   DOI   ScienceOn
38 Efroni, S., Duttagupta, R., Cheng, J., Dehghani, H., Hoeppner, D. J., Dash, C., Bazett-Jones, D. P., Le Grice, S., McKay, R. D., Buetow, K. H., Gingeras, T. R., Misteli, T. and Meshorer, E. (2008) Global transcription in pluripotent embryonic stem cells. Cell Stem Cell 2, 437-447.   DOI
39 Ernst, M., Novak, U., Nicholson, S. E., Layton, J. E. and Dunn, A. R. (1999) The carboxyl-terminal domains of gp130-related cytokine receptors are necessary for suppressing embryonic stem cell differentiation. Involvement of STAT3. J. Biol. Chem. 274, 9729-9737.   DOI   ScienceOn