• Title/Summary/Keyword: heavy-impact sound

Search Result 140, Processing Time 0.025 seconds

Evaluation of the Dynamic Stiffness and Heavy-weight Floor Impact Sound Reduction by Composition of Resilient Materials (완충재 구성방법에 따른 동탄성계수 및 중량바닥충격음 저감특성 평가)

  • Kim, Kyoung-Woo;Jeong, Gab-Cheol;Sohn, Jang-Yeul
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.18 no.2
    • /
    • pp.247-254
    • /
    • 2008
  • Resilient materials are generally used for the floating floors to reduce the floor impact sound. Dynamic stiffness of resilient material, which has the most to do with the floor impact sound reduction. The resilient materials available in Korea include EPS(styrofoam), recycled urethane types, EVA(ethylene vinylacetate) foam rubber, foam PE(polyethylene). glass fiber & rock wool, recycled tire, foam polypropylene. compressed polyester, and other synthetic materials. In this study, we tested dynamic stiffness of resilient material and floor impact sound reduction characteristic to a lot of kinds of resilient materials. It was found that dynamic stiffness of multi-layered damping material could be estimated if know value of each layer that compose whole structure. And the test showed that the amount of the heavy-weight impact sound reduction appeared by being influenced from this dynamic stiffness of resilient material. The dynamic stiffness looked like between other resilient materials, a similar to the amount of the heavy-weight impact sound reduction was shown.

A Study on the Sound Insulation for Void-deck Slab Combined with Deck Plate and Polystyrene Void Foam (데크플레이트와 경량성형재가 결합된 슬래브의 차음성능에 대한 실물실험 평가)

  • Roh, Young-Sook;Yoon, Seong-Ho
    • Journal of the Korean Society of Safety
    • /
    • v.30 no.1
    • /
    • pp.60-65
    • /
    • 2015
  • This study is to explore floor impact sound and sound insulation of reinforced concrete structure with void-deck slab system which combines polystyrene void foam and T-shaped steel deck plate. A void-deck slab system can effectively reduce the amount of concrete used and hence the mass of a reinforced concrete slab. Also void slab system has dynamically favorable for bending. Three-bay 2-story building was constructed as a mock up test specimen using void-deck slab system and floor impact sound was measured to valuate sound insulation performance. Light weight floor impact and heavy weight floor impact were investigated. Light weight floor impact pressure levels were 32dB, 28dB, and 29db at representative locations which are $1^{st}$ level in the floor impact sound insulation performance grading system. The heavy-weight floor impact pressure levels were 44dB, 45dB, and 43dB at representative locations which are $2^{nd}$ level in the floor impact sound insulation performance grading system. Therefore void-deck slab system can be used in public housing apartment building in terms of not only effectively reduced construction materials but also floor impact sound insulation.

Investigation of Floor Impact Sound Levels in Rahmen Structure Multi-story Residential Buildings (라멘복합구조 공동주택의 바닥충격음 실태)

  • 정정호;송희수;전진용
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2004.05a
    • /
    • pp.308-311
    • /
    • 2004
  • It is reported that there is a limit in increasing heavy-weight impact noise isolation performance of the load bearing wall system apartments to meet the regulation of the Ministry of Construction and Transportation (MOCT). To increase the heavy-weight impact noise isolation performance, improvement in structural systems such as increasing concrete slab thickness and application of rahmen structure were proposed. In this study floor impact sound levels from toil apartments with two rahmen structure multi-story residential buildings were measured before the construction of the buildings finished. Measurements were made at living room and two bedrooms at each apartment when the finishing processes were finished. The average value of light-weight impact sound level from ten apartments was 56dB (L'$\sub$n,Aw/). The heavy-weight impact sound level was 44dB (L'$\sub$i.Fmax.Aw/) and the impact sound level of the impact ball was 41dB(L'$\sub$i.Fmax.Aw/), As a result floor impact noises at the rahmen structure system were lower than the regulation level.

  • PDF

Improvement of Floor Impact Noise Measurement and Method for Rating Floor Impact Noise Isolation Performance (바닥충격음 측정 및 차음 평가의 방향)

  • Jeong, Jeong-Ho;Jeong, Yeong;Seo, Sang-Ho;Song, Hee-Soo;Jeon, Jin-Yong
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2004.11a
    • /
    • pp.269-274
    • /
    • 2004
  • The aims of this study were to Investigate the floor impact noise isolation performance of floating floor with isolation materials and propose the improvement direction of floor impact noise measurement method and evaluation classes using impact ball. Reduction of light-weight impact sound pressure level can be achieved by the finishing materials, such as vinyl finishing material and wooden flooring with isolation materials. Floor impact noise Isolation material which satisfy the properties of the floor impact noise isolation materials cause resonance in the low frequency band and worsen heavy-weight impact sound pressure level. Heavy-weight impact sound level can be reduced by using noise reduction flooring, ceiling and increase of slab thickness. Strong impact force in low frequency bang below 63Hz of bang machine is not similar to human impact source and causes some problem in evaluating heavy-weight impact noise but heavy-weight impact noise measurement and evolution using impact ball which is very similar to human impact is more reliable than bang machine. Correction value on the background noise and sensitivity of residents should be considered on the floor impact noise evaluation classes.

  • PDF

Improvement of Fire Resistance and Impact Sound Insulation Performance for Timber Framed Floor by Installation of Isolated Ceiling (분리된 천정의 설치를 통한 목구조 바닥의 내화성능 및 충격음 차단성능 향상)

  • Park, Joo-Saeng;Kim, Se-Jong;Lee, Sang-Joon
    • Journal of the Korea Furniture Society
    • /
    • v.24 no.4
    • /
    • pp.426-432
    • /
    • 2013
  • Fire resistance and impact sound insulation tests were performed for a floor assembly, of which stiffness was reinforced by shortening the span of floor joists by installing glulam beam additionally in the middle or one thirds of the original span, and which an additional ceiling component was installed apart from floor structure. By applying the isolated ceiling, timber framed floor showed 1 hour of fire resistance even in case that dead load was increased by considering cement mortar layer for radiant floor heating. Insulation performance against light and heavy impact sound was improved significantly by applying the sound absorbing layer of big mass and high elasticity in addition to the stiffness improvement and isolated ceiling.

  • PDF

Simplified method on measurement and evaluation of floor impact sound using impact ball (임팩트 볼에 의한 바닥충격음 측정 및 평가 간편법)

  • Kim, Yong-Hee;Lee, Sin-Young;Jeon, Jin-Yong
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2006.11a
    • /
    • pp.631-635
    • /
    • 2006
  • In this study, simplified methods on measurement and evaluation of heavy-wight impact sound was proposed due to provide easy quality control method to construction engineers. The simplified methods include using of rubber impact ball instead of bang machine, reduced number of measuring and impact positions which is prescribed as over 4 points, using of hand-held sound level meter as a frequency analyser and prediction equation for $L_{i.Fmax.AW}$, single number rating, using $L_{Amax}$, and $L_{Lmax}$ at each frequency band. The results showed that a method of boundary driving and boundary measuring is the most similar to the current rating method.

  • PDF

The Experimental Study on the Impact Sound Insulation Floors due to Waste Tire Chip (폐타이어 칩의 바닥충격음 차단성능에 관한 실험적 연구)

  • 양관섭;이세현;김홍열;김승민
    • Journal of KSNVE
    • /
    • v.9 no.3
    • /
    • pp.477-484
    • /
    • 1999
  • This study aims to present proper thickness of resilient mount and pattern of chips for the improvement of impact sound isolation. To achieve this aim, field tests were performed to evaluate the performance of impact sound isolation of pilot samples using waste tire chips against light and heavy-weight impacter, which samples were installed over concrete slabs of an apartment housing. In this study, the experiments were performed by the impact sound level of floors in KS F 2810 "Method for field measurement of floor impact level". As results, a flooring structure using waste tire chips as a resilient mount, with no relation to chip's types, has enhanced performance by 1~2 degree in light impact sound isolation, while it has improvement in heavy impact sound isolation. And fiber-type chips have better performance than granule-type ones when they overlaid concrete slab with 15~20 mm of thickness. For the improvement of impact sound isolation, it is recommended that insulating materials should be applied at joints between floating floors and walls, or floating floors and a doorframes, and also waterproof papers should be used for the effective thickness of resilient mount.ent mount.

  • PDF

Questionnaire Survey on Annoyance of Floor Impact Sound (층간소음 어노이언스에 대한 설문조사)

  • Jeong, Jeong-Ho;Lee, Pyoung-Jik;Jeon, Jin-Yong
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2006.11a
    • /
    • pp.262-265
    • /
    • 2006
  • In order to investigate characteristics of floor impact sound generated in the apartment buildings, questionnaire survey was conducted for respondents living in apartments in 200t. Questions in the surrey were on the characteristics of real impact sounds, subjective annoyance and satisfaction on the heavy and light impact sources. From the survey results, it was found that most annoying time of a day and the space were 8 p.m. to midnight at living room. It was also revealed that the main source of the floor impact sound from the upper floor is a child's jumping and running at from six to nine. More than half of people were not satisfied on the floor impact isolation performance of their own apartments. The percentage of residents who were annoyed by the heavy-weight impact sound such as children's jumping and adult's walking was $5{\sim}10%$ lower than by light-weight impact sound. In addition, females being responded more annoyed by floor impact sound than males.

  • PDF

An Experimental Study on the Reduction of Floor Impact Sound in Apartment Houses by using Model Test (모델 실험체를 이용한 공동주택 바닥충격음 저감에 관한 실험적 연구)

  • Kim, Hang;Gi, No-Gab;Park, Hyeon-Ku;Song, Min-Jeong;Kim, Sun-Woo
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2004.11a
    • /
    • pp.1044-1047
    • /
    • 2004
  • This aim of this study is is an experimental study to introduce the Reduction method of Floor Impact Sound in Apartment Houses by using Model Test, We are measured the floor impact sound in Rahamen and Apartment with Shear Wall and Post-tensioning. There is comparison between Rahmen Structure and Apartment with Shear Wall. The main results from this study are effective in reduction of heavt-weight The slab was constructed by rahamen structure. Heavy-weight can reduced by upgrading naturial frequency of floor impact sound in rahmen structure.

  • PDF

Heavy-impact sound insulation performance according to the changes of dry flooring structure in wall structure

  • Cho, Jongwoo;Lee, Hyun-Soo;Park, Moonseo;Lim, Hohwan;Kim, Jagon
    • International conference on construction engineering and project management
    • /
    • 2017.10a
    • /
    • pp.89-98
    • /
    • 2017
  • The floor heating method generally uses a wet construction method including the installation of resilient material, lightweight foam concrete, heating piping, and finishing mortar. Such a wet construction method not only delays other internal finishing processes during curing period for two mortar pouring process, but also has a disadvantage that it is difficult to replace the floor heating layer when it deteriorated because it is integrated with the frame. Dry floor heating construction method can be a good alternative in that it can solve these defects. Conversely, when it applied to the wall structure that is vulnerable to the interlayer noise compared with the column-beam structure, the question about the heavy-impact sound(HIS) insulation performance is raised. Therefore, conventional dry floor heating method is hard to apply to the wall structure apartments. Therefore, for the purpose to improve the applicability of dry floor heating method in wall structure apartments, this study investigated the change of floor impact sound, especially HIS insulation performance which is one of the required performance for the floor structure. This study tried to examine whether the change of heavy-impact sound pressure level(SPL) shows a tendency at the significant level according to the shape and mass of the floor structure. Through filed experiments on wall structure apartment, this study confirmed that the form of the raised floor shows better HIS insulation performance than the fully-supported form. In addition, it was also confirmed that the HIS insulation performance increases with the mass on the upper part. Moreover, this study found the fact that a mass of about 30 kg/m2 or more should be placed on the upper structure to reduce the heavy-impact SPL according to the bang machine measuring method. Although this study has a limit due to insufficient experiment samples, if the accuracy of this study is increased, it will contribute to the diffusion of dry floor heating by setting the HIS insulation performance target and designing the dry floor heating structure that meets the target.

  • PDF