• Title/Summary/Keyword: heavy truck

Search Result 117, Processing Time 0.034 seconds

Design of a Protection Fence by Crashworthiness Analysis (충돌해석을 통한 방호울타리의 설계)

  • 한석영;고성호
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2002.10a
    • /
    • pp.487-492
    • /
    • 2002
  • In this study, designs of protection fences such as the concrete median barrier and the guardrail were performed. The foreign standard of concrete median barrier was introduced and implemented without modification fitting to domestic vehicles and highway conditions. In a car accident, median barrier doesn't protect vehicles effectively, especially for heavy vehicles such as bus and heavy truck. Guardrail doesn't protect vehicle effectively, either. The purpose of this study is to develop the optimal performance design of concrete median barrier and design of guardrail using the design of experiment as well as crashworthiness analysis which is done by Pam-Crash. As a result of this study, an optimal design of concrete median barrier was obtained considering von Mises stress, volume and COG acceleration of truck. And design of guardrail satisfying the domestic requirements was obtained.

  • PDF

A study on an analysis of torsional vibration of a driveline of heavy duty truck (대형트럭 구동계의 저진동 설계 시스템의 개발연구)

  • Hwang, Won-Gul;Kim, Ki-Sei
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.13 no.3
    • /
    • pp.132-140
    • /
    • 1996
  • This paper developes a torsional vibration model of heavy duty truck drive line for simulation of a driving rattle, which causes very annoying noise to driver at the full load driving condition. Test results show a peak in the fit plots at the frequency of the 2nd harmonics of propeller shaft revolution. A 10 d.o.f. lumped parameter nonlinear torsional vibration model is constructed and engine torque variation is calculated from P- .theta. diagram. Time responses are simulated and compared with the test results, which show fairly good agreement. The effects of paramenter change are investigated, and the optimum configuration is proposed.

  • PDF

Analysis of Truck Management Strategies Impacts on Highway (고속도로 상에서의 트럭교통 관리전략에 대한 영향 분석)

  • Yang, Choong-Heon;Son, Young-Tae
    • International Journal of Highway Engineering
    • /
    • v.11 no.2
    • /
    • pp.175-184
    • /
    • 2009
  • The study analyzes likely impacts of left truck lane restriction strategies on urban freeways based on a traffic simulation model. This study contains two main parts. The first part is performed to develop feasible alternatives as well as provide insights into conditions under left truck lane restrictions would be effective based on the analysis of two representative hypothetical highways. Different levels of O-D demands and truck percentage is at least restrictions would work when maximum rate of flow is more than 1,300vphpl or truck percentage is at least over loft of the total traffic. The second part of our study concerns a case study on a region with perhaps the highest truck volumes in the U.S. - a northbound section of Interstate 710 corridor in Los Angeles County, Southern California. The results show that restricting the two leftmost lanes under congested traffic with heavy ruck use, provides the most positive impacts in terms of improving the flow of traffic and saving fuel. In addition, our study demonstrates that in general, the number of lanes restricted is a crucial factor in the success of this strategy.

  • PDF

Analysis of Truck involved Accidents on Freeways (고속도로에서의 트럭 차량 관련 사고 요인 분석)

  • Yang, Choon-Heon;Son, Young-Tae
    • International Journal of Highway Engineering
    • /
    • v.10 no.2
    • /
    • pp.35-45
    • /
    • 2008
  • Trucking is the most frequently used mode for freight movement due to relatively lower shipping costs and its operational flexibility. However, truck traffic can contribute to serious safety problems where they occupy high percentage of the total traffic. Heavy truck crashes arc more likely to result in serious injuries and fatalities than are crashes involving light vehicles. Therefore, safety issues for truck traffic are very significant both for public agencies and for general travelers. The objective of our study is to find truck-involved accident patterns according to traffic conditions and main factors as well as to find the most critical factor through conventional statistical techniques. A vailable data were obtained from TASAS (Traffic Accident Surveillance and Analysis System). Once critical factors are identified, effective and efficient truck management strategies can be discussed.

  • PDF

Vibration Test of Truck with Air Suspension & Development of Korean Type Air Suspension (공기 현가장치를 장착한 화물차량의 진동측정 및 한국형 공기 현가장치 모듈 개발)

  • Woo, Jun-Seong;Jeon, Yong-Ho;Jung, Sung-Pil;Park, Tae-Won;Kwon, Soon-Ki
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.16 no.12 s.117
    • /
    • pp.1215-1223
    • /
    • 2006
  • A leaf spring suspension has been widely used since it can carry big load and its simplicity. But one major drawback is the poor ride performance because of the friction in the system and the high stiffness coefficient. To overcome these, an air spring suspension can be used. The air spring suspension system can improve the ride of the heavy vehicle significantly and also it can adjust the height to the loading and unloading. The road tests for the truck with the leaf spring suspension and air spring suspension are performed to compare the ride quality of the two systems. To develop the air spring suspension system tailored to the target truck, chassis development procedure using CAE has been applied.

Performance of Fuel Cell System for Medium Duty Truck by Cooling System Configuration (상용차용 고분자 전해질 연료전지 냉각시스템 배열에 따른 성능 특성)

  • WOO, JONGBIN;KIM, YOUNGHYEON;YU, SANGSEOK
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.32 no.4
    • /
    • pp.236-244
    • /
    • 2021
  • Fuel cell systems for medium duty truck require high power demands under driving. Since high power demands results in significant heat generation, thermal management is crucial for the performance and durability of medium duty truck. Therefore, various configurations of dual stacks with cooling systems are investigated to understand appropriate thermal management conditions. The simulation model consists of a dynamic fuel cell stack model, a cooling system model equipped with a controller, and the mounted controller applies a feedback controller to control the operating temperature. Also, In order to minimize parasitic power, the comparison of the cooling systems involved in the arrangement was divided into three case. As a result, this study compares the reaction of fuel cells to the placement of the cooling system under a variety of load conditions to find the best placement method.

A Study on the Impacts of Truck Platooning on Freeway Traffic-Flow and the Effect of Dedicated Lane (고속도로 화물차의 군집주행이 교통류에 미치는 영향 및 전용차로 효과 연구)

  • KIM, Joohye;Lee, YoungIhn
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.19 no.5
    • /
    • pp.52-69
    • /
    • 2020
  • Considering the need for an infrastructure-level review, this study analyzed the impact of truck platooning on freeway traffic flow and the effect of dedicated lanes based on domestic road and traffic conditions. According to the study, the higher traffic volume and truck ratio, the higher ratio of platoons and the greater size of platoons are formed, which results in greater effect of increasing the average speed of the network. Therefore, the routes with heavy traffic and heavy cargo traffic could be positively considered for truck platooning. However, the analysis showed that the effect of increasing the average speed of the entire network is difficult to expect in the event of a queue due to entry and exit, and that the overall network's throughput could be reduced. Therefore, traffic operation strategies associated with the access road, such as securing capacity of the connection, are needed to maximize the effect of truck platooning. When it comes to the effect of dedicated lane, it could have a positive effect only if one lane was fully operated by automated trucks under the condition of 100% MPR, which allowed positive effects in all aspects, such as higher average speed, throughput, and reduced conflict rates.

Development of Vehicular Load Model using Heavy Truck Weight Distribution (II) - Multiple Truck Effects and Model Development (중차량중량분포를 이용한 차량하중모형 개발(II) - 연행차량 효과 분석 및 모형 개발)

  • Hwang, Eui-Seung
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.29 no.3A
    • /
    • pp.199-207
    • /
    • 2009
  • In this paper, new vehicular load model is developed for reliability-based bridge design code. Rational load model and statistical properties of loads are important for developing reliability-based design code. In the previous paper, truck weight data collected at eight locations using WIM or BWIM system are analyzed to calculate the maximum truck weights for specified bridge lifetime. Probability distributions of upper 20% total truck weight are assumed as Extreme Type I (Gumbel Distribution) and 100 years maximum weights are estimated by linear regression. In this study, effects of multiple presence of trucks are analyzed. Probability of multiple presence of trucks are estimated and corresponding multiple truck weights are calculated using the same probability distribution function as in the previous paper. New vehicular live load model are proposed for span length from 10 m to 200 m. New model is compared with current Korean model and various load models of other countries.

A Study on the Emission Characteristics of LNG-diesel Dual-fuel Engine for Euro 2 Standard (Euro 2 기준 LNG-경유 혼소엔진의 배출가스 특성에 관한 연구)

  • Cho, Gyu-Baek;Kim, Chong-Min;Kim, Dong-Sik;Kim, Hong-Suk
    • Journal of the Korean Institute of Gas
    • /
    • v.15 no.1
    • /
    • pp.9-14
    • /
    • 2011
  • Heavy duty diesel engine has relatively small portion of whole vehicles due to long drive distance and large engine displacement, but largely influences atmosphere environment. City buses changed to CNG (Compressed Natural Gas) bus with Korea-Japan Worldcup. Heavy duty truck and intercity bus, however, were impossible to use CNG because those kinds of vehicles had long drive distance and CNG station was installed mainly at the around of the bus garage of city. Insulation container storing the natural gas as a liquid makes heavy duty truck and intercity bus possible to use the natural gas. Drive using diesel is possible where is hard to recharge the gas. With LNG (Liquefied Natural Gas), the dependence on oil is largely decreased, PM (Particulate Matter) and NOx which is chronic disadvantage of diesel is remarkably reduced and finally $CO_2$, the representative green house gas, is reduced over 10%.

Estimation of Construction Equipment Production Rates: Focus on Efficiency Rate (건설기계 시공능력 산정에 관한 연구 : 작업효율 중심으로)

  • Park, Hee-Sung;Han, Ye Lyeong;Huh, Youngki;Ahn, Bang Ryul
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.28 no.1D
    • /
    • pp.67-72
    • /
    • 2008
  • Heavy equipment is a very important factor for successful construction implementation. Also, the cost for heavy equipment is a major part of construction cost. Therefore, the estimation of equipment cost is a critical job in the construction planning phase. A formula for production rates shown in 'Standard Unit Labor' has been used to estimate construction equipment capability per hour and cost. Although the performance of equipment has been improved, the efficiency rates in the formula are not updated lately. Therefore, this research performed several site visits to measure construction equipment working time and then calculates the efficiency rates for hydraulic backhoe, loader, and dump truck. The results show that the measured efficiencies of backhoe and loader are higher than current ones and vice versa for dump truck. This research proposes the needs for a standardized calculation formula and systematic and long-term data collection and measurement for updating efficiency rates for heavy equipment.