Browse > Article
http://dx.doi.org/10.7316/KHNES.2021.32.4.236

Performance of Fuel Cell System for Medium Duty Truck by Cooling System Configuration  

WOO, JONGBIN (Department of Mechanical Engineering, Graduate School, Chungnam National University)
KIM, YOUNGHYEON (Department of Mechanical Engineering, Graduate School, Chungnam National University)
YU, SANGSEOK (Department of Mechanical Engineering, College of Engineering, Chungnam National University)
Publication Information
Transactions of the Korean hydrogen and new energy society / v.32, no.4, 2021 , pp. 236-244 More about this Journal
Abstract
Fuel cell systems for medium duty truck require high power demands under driving. Since high power demands results in significant heat generation, thermal management is crucial for the performance and durability of medium duty truck. Therefore, various configurations of dual stacks with cooling systems are investigated to understand appropriate thermal management conditions. The simulation model consists of a dynamic fuel cell stack model, a cooling system model equipped with a controller, and the mounted controller applies a feedback controller to control the operating temperature. Also, In order to minimize parasitic power, the comparison of the cooling systems involved in the arrangement was divided into three case. As a result, this study compares the reaction of fuel cells to the placement of the cooling system under a variety of load conditions to find the best placement method.
Keywords
Proton exchange membrane fuel cell; Thermal management; Parasitic energy; Cooling system; Hydrogen heavy duty truck;
Citations & Related Records
연도 인용수 순위
  • Reference
1 L. Wang, A. Husar, T. Zhou, and H. Liu, "A parametric study of PEM fuel cell performances", Int. J. Hydrogen Energy, Vol. 28, No. 11, 2003, pp. 1263-1272, doi: https://doi.org/10.1016/S0360-3199(02)00284-7.   DOI
2 S. L. Chavan and D. B. Talange, "Modeling and performance evaluation of PEM fuel cell by controlling its input parameters", Energy, Vol. 138, 2017, pp. 437-445, doi: https://doi.org/10.1016/j.energy.2017.07.070.   DOI
3 J. T. Pukrushpan, "Modeling and control of fuel cell systems and fuel processors [dissertation]", University of Michigan, 2003. Retrieved from http://www-personal.umich.edu/~annastef/FuelCellPdf/pukrushpan_thesis.pdf.
4 G. Vasu and A. K. Tangirala, "Control-orientated thermal model for proton-exchange membrane fuel cell systems", Journal of Power Sources, Vol. 183, No. 1, 2008, pp. 98-108, doi: https://doi.org/10.1016/j.jpowsour.2008.03.087.   DOI
5 J. C. Amphlett, R. F. Mann, B. A. Peppley, P. R. Roberge, and A. Rodrigues, "A model predicting transient responses of proton exchange membrane fuel cells", Journal of Power sources, Vol. 61, No. 1-2, 1996, pp. 183-188, doi: https://doi.org/10.1016/S0378-7753(96)02360-9.   DOI
6 H. Pourrahmani, M. Moghimia, and M. Siavashi, "Thermal management in PEMFCs: the respective effects of porous media in the gas flow channel", Int. J. Hydrogen Energy, Vol. 44, No. 5, 2019, pp. 3121-3137, doi: https://doi.org/10.1016/j.ijhydene.2018.11.222.   DOI
7 I. S. Lim, J. Y. Park, E. J. Choi, and M. S. Kim, "Efficient fault diagnosis method of PEMFC thermal management system for various current densities", Int. J. Hydrogen Energy, Vol. 46, No. 2, 2021, pp. 2543-2554, doi: https://doi.org/10.1016/j.ijhydene.2020.10.085.   DOI
8 P. Hu, G. Y. Cao, X. J. Zhu, and M. Hu, "Coolant circuit modeling and temperature fuzzy control of proton exchange membrane fuel cells", Int. J. Hydrogen Energy, Vol. 35, No. 17, 2010, pp. 9110-9123, doi: https://doi.org/10.1016/j.ijhydene.2010.06.046.   DOI
9 A. Rabbani and M. Rokni, "Dynamic characteristics of an automotive fuel cell system for transitory load changes", Sustainable Energy Technologies and Assessments, Vol. 1, 2013, pp. 34-43, doi: https://doi.org/10.1016/j.seta.2012.12.003.   DOI
10 H. Pourrahmani, M. Siavashi, and M. Moghimi, "Design optimization and thermal management of the PEMFC using artificial neural networks", Energy, Vol. 182, 2019, pp. 443-459, doi: https://doi.org/10.1016/j.energy.2019.06.019.   DOI
11 J. Han and S, Yu, "Ram air compensation analysis of fuel cell vehicle cooling system under driving modes", Applied Thermal Engineering, Vol. 142, 2018, pp. 530-542, doi: https://doi.org/10.1016/j.applthermaleng.2018.07.038.   DOI
12 J. Han, J. Park, and S. Yu, "Control strategy of cooling system for the optimization of parasitic power of automotiv e fuel cell system", Int. J. Hydrogen Energy, Vol. 40, No. 39, 2015, pp. 13549-13557, doi: https://doi.org/10.1016/j.ijhydene.2015.08.067.   DOI
13 N. S. Ap, P. Guerrero, and P. Jouanny, "Influence of fan system electric power on the heat performance of engine cooling module", SAE International in United States, 2003, doi: https://doi.org/10.4271/2003-01-0275.
14 S. Yu and D. Jung, "A study of operation strategy of cooling module with dynamic fuel cell system model for transportation application", Renewable Energy, Vol. 35, No. 11, 2010, pp. 2525-2532, doi: https://doi.org/10.1016/j.renene.2010.03.023.   DOI
15 Y. Saygili, I. Eroglu, and S. Kincal, "Model based temperature controller development for water cooled PEM fuel cell systems", Int. J. Hydrogen Energy, Vol. 40, No. 1, 2015, pp. 615-622, doi: https://doi.org/10.1016/j.ijhydene.2014.10.047.   DOI