• 제목/요약/키워드: heat-killed cells

검색결과 55건 처리시간 0.026초

Fractionated Coptis chinensis Extract and Its Bioactive Component Suppress Propionibacterium acnes-Stimulated Inflammation in Human Keratinocytes

  • Lee, Jin Wook;Kang, Yoon Joong;Choi, Hyun Kyung;Yoon, Young Geol
    • Journal of Microbiology and Biotechnology
    • /
    • 제28권6호
    • /
    • pp.839-848
    • /
    • 2018
  • Coptis chinensis (CC) is widely used in Asian countries to treat inflammatory diseases. We investigated the anti-inflammatory activity of the aqueous fraction separated from CC extract and of berberine, its key bioactive component, in human keratinocytes and the possible molecular mechanisms underlying this. Treating HaCaT keratinocytic cells with heat-killed Propionibacterium acnes induced nitric oxide and proinflammatory cytokine (e.g., tumor necrosis $factor-{\alpha}$, interleukin $(IL)-1{\beta}$, and IL-8) production and their mRNA expression; these effects were suppressed by pretreatment with the aqueous fraction or berberine, which also suppressed the phosphorylation of ERK, JNK, and p38 kinases and the nuclear expression of nuclear factor $(NF)-{\kappa}B$ p65 in P. acnes-stimulated cells. Thus, the aqueous fraction and berberine effectively exerted anti-inflammatory activities by suppressing mitogen-activated protein kinase and $NF-{\kappa}B$ signaling pathways in human keratinocytes and may be used for treating P. acnes-induced inflammatory skin diseases.

Probiotics Inhibit Lipopolysaccharide-Induced Interleukin-8 Secretion from Intestinal Epithelial Cells

  • Oh, Hyun-Wook;Jeun, Gi-Hoon;Lee, Jin;Chun, Tae-Hoon;Kim, Sae-Hun
    • 한국축산식품학회지
    • /
    • 제32권4호
    • /
    • pp.434-440
    • /
    • 2012
  • It has been suggested that probiotics could be useful for the prevention of symptomatic relapse in patients with inflammatory bowel disease (IBD). Interleukin (IL)-8 has been well recognized as one of the pro-inflammatory cytokines that could trigger inflammation and epithelial barrier dysfunction. In this study, the anti-inflammatory effects of probiotics were investigated using a human epithelial cell line (HT-29). Probiotics from infant feces and kimchi were tested for their cytotoxicity and effects on adhesion to epithelial cells. The present results show that seven strains could form 70 % adhesion on HT-29. The probiotics used in this study did not affect HT-29 cell viability. To screen anti-inflammatory lactic acid bacteria, HT-29 cells were pretreated with live and heat-killed probiotics, and lipopolysaccharide (LPS) ($1{\mu}g/mL$) was then added to stimulate the cells. The cell culture supernatant was then used to measure IL-8 secretion by ELISA, and the cell pellet was used to determine IL-8 and toll-like receptor (TLR-4) mRNA expression levels by RT-PCR. Some probiotics (KJP421, KDK411, SRK414, E4191, KY21, and KY210) exhibited anti-inflammatory effects through the repression of IL-8 secretion from HT-29 cells. In particular, Lactobacillus salivarius E4191, originating from Egyptian infant feces, not only decreased IL-8 mRNA expression, but also decreased TLR-4 expression. These results indicate that Lactobacillus salivarius E4191 may have a protective effect in intestinal epithelial cells.

A standardized method to study immune responses using porcine whole blood

  • Sameer-ul-Salam Mattoo;Ram Prasad Aganja;Seung-Chai Kim;Chang-Gi Jeong;Salik Nazki;Amina Khatun;Won-Il Kim;Sang-Myeong Lee
    • Journal of Veterinary Science
    • /
    • 제24권1호
    • /
    • pp.11.1-11.14
    • /
    • 2023
  • Background: Peripheral blood mononuclear cells (PBMCs) are commonly used to assess in vitro immune responses. However, PBMC isolation is a time-consuming procedure, introduces technical variability, and requires a relatively large volume of blood. By contrast, whole blood assay (WBA) is faster, cheaper, maintains more physiological conditions, and requires less sample volume, laboratory training, and equipment. Objectives: Herein, this study aimed to develop a porcine WBA for in vitro evaluation of immune responses. Methods: Heparinized whole blood (WB) was diluted (non-diluted, 1/2, 1/8, and 1/16) in RPMI-1640 media, followed by phorbol myristate acetate and ionomycin. After 24 h, cells were stained for interferon (IFN)-γ secreting T-cells followed by flow cytometry, and the supernatant was analyzed for tumor necrosis factor (TNF)-α. In addition, diluted WB was stimulated by lipopolysaccharide (LPS) and polyinosinic:polycytidylic acid (poly I:C), reference strain KCTC3557 (RS), field isolate (FI), of heat-killed (HK) Streptococcus suis, and porcine reproductive and respiratory syndrome virus (PRRSV). Results: The frequency of IFN-γ+CD3+ T-cells and concentration of TNF-α in the supernatant of WB increased with increasing dilution factor and were optimal at 1/8. WB TNF-α and interleukin (IL)-10 cytokine levels increased significantly following stimulation with LPS or poly I:C. Further, FI and RS induced IL-10 production in WB. Additionally, PRRSV strains increased the frequency of IFN-γ+ CD4-CD8+ cells, and IFN-γ was non-significantly induced in the supernatant of re-stimulated samples. Conclusions: We propose that the WBA is a rapid, reliable, and simple method to evaluate immune responses and WB should be diluted to trigger immune cells.

치주염 유발 세균 Aggregatibacter actinomycetemcomitans와 Porphyromonas gingivalis에 의한 committed osteoclast precursor 분화 증가 (Augmented Osteoclastogenesis from Committed Osteoclast Precursors by Periodontopathic Bacteria Aggregatibacter actinomycetemcomitans and Porphyromonas gingivalis)

  • 박옥진;권영각;윤철희;한승현
    • 한국미생물·생명공학회지
    • /
    • 제44권4호
    • /
    • pp.557-562
    • /
    • 2016
  • 치주질환은 만성염증성 질환으로 치조골소실을 일으켜 성인치아상실을 유발하는 요인 중 하나이다. 그람 음성세균인 Aggregatibacter actinomycetemcomitans와 Porphyromonas gingivalis는 치주질환환자의 병소에서 쉽게 동정된다. 지질다당체(Lipopolysaccharide; LPS)는 그람 음성세균의 핵심 독력인자로 알려져 있다. 이러한 세균과 LPS는 파골세포에 의한 골소실을 조절하는 요인 중 하나이다. 그러므로 본 연구에서는 동물모델을 활용하여 A. actinomycetemcomitans와 P. gingivalis의 의한 골소실 여부를 확인하고, 기전규명을 위하여 A. actinomycetemcomitans, P. gingivalis, A. actinomycetemcomitans와 P. gingivalis에서 분리한 LPS에 의한 파골세포분화 영향을 연구하였다. 열사멸한 A. actinomycetemcomitans (HKAa)와 열사멸한 P. gingivalis (HKPg)가 복강으로 투여된 쥐의 대퇴골은 대조군에 비해 감소된 골량을 보여주었다. 이러한 골소실의 증가가 파골세포분화 때문인지 확인하기 위해 파골세포분화를 연구한 결과, bone marrow-derived macrophage (BMM)의 RANKL-매개 파골세포분화를 감소시켰으나, committed osteoclast precursor의 파골세포분화를 유도함을 확인하였다. 세균에 의한 파골세포분화 결과와 동일하게 A. actinomycetemcomitans와 P. gingivalis에서 분리한 LPS 역시 RANKL-매개 파골세포분화는 감소시키고, committed osteoclast precursor의 파골세포분화를 유도하였다. 결과적으로 치주원인균인 A. actinomycetemcomitans와 P. gingivalis는 committed osteoclast precursor의 파골세포분화를 증가시키는데, 이 세균들의 LPS가 핵심 역할을 수행하는 것으로 판단되며 이를 통해 골 흡수를 유발함을 알 수 있었다.

Micronized and Heat-Treated Lactobacillus plantarum LM1004 Stimulates Host Immune Responses Via the TLR-2/MAPK/NF-κB Signalling Pathway In Vitro and In Vivo

  • Lee, Jisun;Jung, Ilseon;Choi, Ji Won;Lee, Chang Won;Cho, Sarang;Choi, Tae Gyu;Sohn, Minn;Park, Yong Il
    • Journal of Microbiology and Biotechnology
    • /
    • 제29권5호
    • /
    • pp.704-712
    • /
    • 2019
  • Although nanometric dead Lactobacillus plantarum has emerged as a potentially important modulator of immune responses, its underlying mechanism of action has not been fully understood. This study aimed to identify the detailed biochemical mechanism of immune modulation by micronized and heat-treated L. plantarum LM1004 (MHT-LM1004, <$1{\mu}m$ in size). MHT-LM1004 was prepared from L. plantarum LM1004 via culture in a specifically designed membrane bioreactor and heat treatment. MHT-LM1004 was shown to effectively induce the secretion of $TNF-{\alpha}$ and IL-6 and the mRNA expression of inducible nitric oxide synthase (iNOS). MHT-LM1004 enhanced the expression of TLR-2, phosphorylation of MAPKs (ERK), and nuclear translocation of $NF-{\kappa}B$ in a dose-dependent manner. Oral administration of MHT-LM1004 ($4{\times}10^9$ or $4{\times}10^{11}cells/kg$ mouse body weight) increased the splenocyte proliferation and serum cytokine levels. These results suggested that MHT-LM1004 effectively enhances early innate immunity by activating macrophages via the TLR-2/MAPK/$NF-{\kappa}B$ signalling pathway and that this pathway is one of the major routes in immune modulation by the Lactobacillus species.

Lipoteichoic Acid Isolated from Weissella cibaria Increases Cytokine Production in Human Monocyte-Like THP-1 Cells and Mouse Splenocytes

  • Hong, Yi-Fan;Lee, Yoon-Doo;Park, Jae-Yeon;Kim, Seongjae;Lee, Youn-Woo;Jeon, Boram;Jagdish, Deepa;Kim, Hangeun;Chung, Dae Kyun
    • Journal of Microbiology and Biotechnology
    • /
    • 제26권7호
    • /
    • pp.1198-1205
    • /
    • 2016
  • Lactic acid bacteria (LAB) have beneficial effects on intestinal health and skin diseases. Lipoteichoic acid (LTA), a cell wall component of gram-positive bacteria, is known to induce the production of several cytokines such as TNF-α, IL-1β, and IL-8 and affect the intestinal microflora, anti-aging, sepsis, and cholesterol level. In this study, Weissella cibaria was isolated from Indian dairy products, and we examined its immune-enhancing effects. Live and heat-killed W. cibaria did not induce the secretion of immune-related cytokines, whereas LTA isolated from W. cibaria (cLTA) significantly increased the secretion of TNF-α, IL-1β, and IL-6 in a dose-dependent manner. cLTA increased the phosphorylation of nuclear factor kappa-light-chain-enhancer of activated B cells, p38 mitogen-activated protein kinases, and c-Jun N-terminal kinases in THP-1 cells. The secretion of TNF-α and IL-6 was also increased in the cLTA-treated mouse splenocytes. These results suggest that cLTA, but not W. cibaria whole cells, has immune-boosting potential and can be used to treat immunosuppression diseases.

결핵균 감염에 의한 THP-1 세포에서의 Prothymosin alpha 유전자 발현증가 (Up-regulation of Prothymosin alpha in THP-1 Cells Infected with Mycobacterium tuberculosis)

  • 송호연;장광식;변희선;이신제;김진구;최용경;고광균
    • 대한미생물학회지
    • /
    • 제35권2호
    • /
    • pp.149-157
    • /
    • 2000
  • Mycobacterium tuberculosis is capable of growing and survival within macrophage. The purpose of this study was to identify the genes regulated by infection of mycobacteria in human monocytic THP-1 cells. We used the differential display reverse transcriptase polymerase chain reaction (DD RT-PCR) and nothern blot analysis to confirm the differentially expressed genes from THP-1 cells infected with live Mycobacterium tuberculosis H37Rv, heat-killed Mycobacterium tuberculosis H37Rv and live Mycobacterium bovis BCG. Among many up or down-regulated clones, 27 clones were sequenced and compared with known genes on GenBank. Thirteen of over-expressed clones from THP-1 cells infected with live Mycobacterium tuberculosis H37Rv were identical to human prothymosin alpha, eight were novel clones and six clones showed homology with Human ferritin H chain, Esherichia coli bgl, Mouse RNA-dependent EIF-2 alpha kinase, E. coli htrL, Hyaluronan receptor and T cell receptor. Our result suggests that Mycobacterium tuberculosis might regulate prothymosin alpha gene transcription in monocytic THP-1 cell.

  • PDF

넙치에서의 Vbrio vulnificus 오염 방지를 위한 백신 연구 (Bacterins to Prevent the Contamination of Vbrio vulnificus in the Flounder, Paralichthys olivaceus)

  • 손상규;김명석;박준효;유민호;정현도
    • 한국수산과학회지
    • /
    • 제35권1호
    • /
    • pp.1-7
    • /
    • 2002
  • 비브리오 패혈증의 원인균인 V vulnificus에 대한 어류의 저항성을 증강시키기 위한 연구로써, 비브리오 백신이 경구로 투여된 넙치에서의 특이 또는 비특이적 면역반응을 조사하였다. 넙치에 대하여 UHKB (uncoated heat killed bacterin of V. vulnincus)를 20rng1kg b.w.의 농도로 경구를 통하여 4주 연속 투여 (4W) 또는 1주 동안 투여하고 2주 동안 투여하지 않다가 다시 1주 동안 투여 (1-2-lW) 하는 두 가지 방법으로 실시한 후 형성된 혈청내 특이 항체량을 비교한 결과 1-2-1W group은 4W group에는 도달하지 못하였지만 명백히 증가된 특이 항체량을 보여주었다. UHKB를 1주일에 2회씩 4주 연속 투여한 실험구가 최종 투여 후 2주 째부터 가장 높은 항체가를 보여 주었고 이러한 경향은 전 실험기간 동안 계속 유지되었다. 이러한 실험 결과는 단일세포수준에서 분석된 특이항체 생성세포 (SASC) 수의 계측에서도 확인되었는데 백신의 최종 경구투석 후 1주 째부터 대조구에 비하여 증가를 보인 실험구의 SASC수는 최종 투여 후 8주 째까지 유지되었다. 그러나 내산성으로 제조된 백신 (ECHB)은 V.vulnificus에 대한 항체생성 면역반응 그리고 인위 감염시킨 V vulnifcus (1$\times$10 CFU/kg b.w.) 생균의 체내 제거능력 분석 양쪽 모두에서 UHKB에 비하여 낮은 결과를 보여 주었다. 그러므로 넙치에 경구 투여된 UHKB는 V vulnificus의 오염을 억제 할 수 있는 효과적인 방법으로 확인되었으나 내산성으로 제조된 ECHB는 면역반응 증가를 유도하지 못하는 것으로 나타났다.

Mechanisms Underlying Enterococcus faecalis-Induced Tumor Necrosis Factor-$\alpha$ Production in Macrophages

  • Choi, Eun-Kyoung;Kim, Dae-Eob;Oh, Won-Mann;Paek, Yun-Woong;Kang, In-Chol
    • International Journal of Oral Biology
    • /
    • 제35권2호
    • /
    • pp.43-49
    • /
    • 2010
  • Enterococcus faecalis, a gram-positive bacterium, has been implicated in endodontic infections, particularly in chronic apical periodontitis. Proinflammatory cytokines, including tumor necrosis factor-$\alpha$ (TNF-$\alpha$), are involved in the pathogenesis of these apical lesions. E. faecalis has been reported to stimulate macrophages to produce TNF-$\alpha$. The present study investigated the mechanisms involved in TNF-$\alpha$ production by a murine macrophage cell line, RAW 264.7 in response to exposure to E. faecalis. Both live and heat-killed E. faecalis induced high levels of gene expression and protein release of TNF-$\alpha$. Treatment of RAW 264.7 cells with cytochalasin D, an inhibitor of endocytosis, prevented the mRNA up-regulation of TNF-$\alpha$ by E. faecalis. In addition, antioxidant treatment reduced TNF-$\alpha$ production to baseline levels. Inhibition of extracellular signal-regulated kinase (ERK) and p38 mitogen-activated protein (MAP) kinase also significantly attenuated E. faecalis-induced TNF-$\alpha$ expression by RAW 264.7 cells. Furthermore, activation of NF-${\kappa}B$ and AP-1 in RAW 264.7 cells was also stimulated by E. faecalis. These results suggest that the phagocytic uptake of bacteria is necessary for the induction of TNF-$\alpha$ in E. faecalis-stimulated macrophages, and that the underlying intracellular signaling pathways involve reactive oxygen species, ERK, p38 MAP kinase, NF-${\kappa}B$, and AP-1.

Streptomyces coelicolor A3(2)의 Acetyl Xylan Esterase를 발현하는 Escherichia coli의 과산화수소 저항성 ($H_2$ $O_2$ Resistance of Escherichia coli That Expresses Acetyl Xylan Esterase of Streptomyces coelicolor A3(2))

  • 김재헌;최원일;윤석원;정상운;오충훈
    • 미생물학회지
    • /
    • 제40권3호
    • /
    • pp.232-236
    • /
    • 2004
  • Streptomyces coelicolor A3(2)의 acetyl xylan esterase (AxeA)가 Escherichia coli의 과산화수소 저항성에 미치는 영향을 알아보고자 하였다. AxeA 발현은 isopropyl-$\beta$-thiogalactoside로 유도되었고 생산된 AxeA는 SDS-polyacrylamide gel electrophoresis방법으로 확인하였다. AxeA 발현에 따른 과산화수소 저항성의 변화를 E. coli의 생장곡선과 생존율을 통하여 조사하였다. AxeA가 발현되지 않으면 모든 처리 농도 (1 mM, 2.5mM, 5mM)에서 균의 사멸이 일어났다. AxeA가 발현되는 조건에서는 5mM을 제외한 과산화수소 1mM와 2.5mM에서 E. coli의 사멸이 저지되었다. 또한 1.5mM의 과산화수소에 대한생존율이 59%에서 74%로 높다졌다. 동시에 E. coli의 최고생장온도에서에 근접한 $45^{\circ}C$에서의 생존율도 증가되는 결과를 얻었다. 그러므로 AxeA 단백질은 산화적 스트레스와 온도스트레스에 대해 교차 저항성을 나타내는 역할을 한다고 결론지었다.