Browse > Article
http://dx.doi.org/10.4014/jmb.1712.12051

Fractionated Coptis chinensis Extract and Its Bioactive Component Suppress Propionibacterium acnes-Stimulated Inflammation in Human Keratinocytes  

Lee, Jin Wook (Department of Biomedical Science, Jungwon University)
Kang, Yoon Joong (Department of Biomedical Science, Jungwon University)
Choi, Hyun Kyung (Department of Medicinal Chemistry, Jungwon University)
Yoon, Young Geol (Department of Biomedical Science, Jungwon University)
Publication Information
Journal of Microbiology and Biotechnology / v.28, no.6, 2018 , pp. 839-848 More about this Journal
Abstract
Coptis chinensis (CC) is widely used in Asian countries to treat inflammatory diseases. We investigated the anti-inflammatory activity of the aqueous fraction separated from CC extract and of berberine, its key bioactive component, in human keratinocytes and the possible molecular mechanisms underlying this. Treating HaCaT keratinocytic cells with heat-killed Propionibacterium acnes induced nitric oxide and proinflammatory cytokine (e.g., tumor necrosis $factor-{\alpha}$, interleukin $(IL)-1{\beta}$, and IL-8) production and their mRNA expression; these effects were suppressed by pretreatment with the aqueous fraction or berberine, which also suppressed the phosphorylation of ERK, JNK, and p38 kinases and the nuclear expression of nuclear factor $(NF)-{\kappa}B$ p65 in P. acnes-stimulated cells. Thus, the aqueous fraction and berberine effectively exerted anti-inflammatory activities by suppressing mitogen-activated protein kinase and $NF-{\kappa}B$ signaling pathways in human keratinocytes and may be used for treating P. acnes-induced inflammatory skin diseases.
Keywords
Anti-inflammation; berberine; Coptis chinensis; keratinocytes; P. acnes;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Sugisaki H, Yamanaka K, Kakeda M, Kitagawa H, Tanaka K, Watanabe K, et al. 2009. Increased interferon-g, interleukin- 12p40 and IL-8 production in Propionibacterium acnes-treated peripheral blood mononuclear cells from patient with acne vulgaris: host response but not bacterial species is the determinant factor of the disease. J. Dermatol. Sci. 55: 47-52.   DOI
2 Wang YY, Ryu AR, Jin S, Jeon YM, Lee MY. 2017. Chlorin e6-mediated photodynamic therapy suppresses P. acnesinduced inflammatory response via NF${\kappa}B$ and MAPKs signaling pathway. PLoS One 12: e0170599.   DOI
3 Molina M, Cid VJ, Martin H. 2010. Fine regulation of Saccharomyces cerevisiae MAPK pathways by post-translational modifications. Yeast 27: 503-511.   DOI
4 Lee AY, Lee S, Kim HY, Lee S, Cho EJ. 2016. Anti-inflammatory effects of luteolin and luteoloside from Taraxacum coreanum in RAW264.7 macrophage cells. Appl. Biol. Chem. 59: 747-754.   DOI
5 Bonizzi G, Karin M. 2004. The two NF-${\kappa}B$ activation pathways and their role in innate and adaptive immunity. Trends Immunol. 25: 280-288.   DOI
6 Huang WC, Tsai TH, Chuang LT, Li YY, Zouboulis CC, Tsai PJ. 2014. Anti-bacterial and anti-inflammatory properties of capric acid against Propionibacterium acnes: a comparative study with lauric acid. J. Dermatol. Sci. 73: 232-240.   DOI
7 Wu J, Zhang H, Hu B, Yang L, Wang P, Wang F, et al. 2016. Coptisine from Coptis chinensis inhibits production of inflammatory mediators in lipopolysaccharide-stimulated RAW 264.7 murine macrophage cells. Eur. J. Pharmacol. 780: 106-114.   DOI
8 Lee WR, Kim KH, An HJ, Kim JY, Chang YC, Chung H, et al. 2014. The protective effects of melittin on Propionibacterium acnes-induced inflammatory responses in vitro and in vivo. J. Invest. Dermatol. 134: 1922-1930.   DOI
9 Turner MD, Nedjai B, Hurst T, Pennington DJ. 2014. Cytokines and chemokines: at the crossroads of cell signalling and inflammatory disease. Biochim. Biophys. Acta 1843: 2563- 2582.   DOI
10 Nagy I, Pivarcsi A, Koreck A, Szell M, Urban E, Kemeny L. 2005. Distinct strains of Propionibacterium acnes induce selective human ${\beta}$-defensin-2 and interleukin-8 expression in human keratinocytes through Toll-like receptors. J. Invest. Dermatol. 124: 931-938.   DOI
11 Viatour P, Merville MP, Bours V, Chariot A. 2005. Phosphorylation of NF-${\kappa}B$ and $I{\kappa}B$ proteins: implications in cancer and inflammation. Trends Biochem. Sci. 30: 43-52.   DOI
12 Enk R, Ehehalt R, Graham JE, Bierhaus A, Remppis A, Greten HJ. 2007. Differential effect of Rhizoma coptidis and its main alkaloid compound berberine on TNF-${\alpha}$ induced NF${\kappa}B$ translocation in human keratinocytes. J. Ethnopharmacol. 109: 170-175.   DOI
13 Li JY, Wang XB, Luo JG, Kong LY. 2015. Seasonal variation of alkaloid contents and anti-inflammatory activity of Rhizoma coptidis based on fingerprints combined with chemometrics methods. J. Chromatogr. Sci. 53: 1131-1139.   DOI
14 Grange PA, Raingeaud J, Calvez V, Dupin N. 2009. Nicotinamide inhibits Propionibacterium acnes-induced IL-8 production in keratinocytes through the NF-${\kappa}B$ and MAPK pathways. J. Dermatol. Sci. 56: 106-112.   DOI
15 Zou K, Li Z, Zhang Y, Zhang HY, Li B, Zhu WL, et al. 2017. Advances in the study of berberine and its derivatives: a focus on anti-inflammatory and anti-tumor effects in the digestive system. Acta Pharmacol. Sin. 38: 157-167.   DOI
16 Kim JM, Jung HA, Choi JS, Lee NG. 2010. Identification of anti-inflammatory target genes of Rhizoma coptidis extract in lipopolysaccharide-stimulated RAW264.7 murine macrophagelike cells. J. Ethnopharmacol. 130: 354-362.   DOI
17 Teng H, Choi YH. 2014. Optimization of ultrasonic-assisted extraction of bioactive alkaloid compounds from rhizoma coptidis (Coptis chinensis Franch.) using response surface methodology. Food Chem. 142: 299-305.   DOI
18 Yan D, Jin C, Xiao XH, Dong XP. 2008. Antimicrobial properties of berberines alkaloids in Coptis chinensis Franch by microcalorimetry. J. Biochem. Biophys. Methods 70: 845-849.   DOI
19 Roux PP, Blenis J. 2004. ERK and p38 MAPK-activated protein kinases: a family of protein kinases with diverse biological functions. Microbiol. Mol. Biol. Rev. 68: 320-344.   DOI
20 Jabbarzadeh Kaboli P, Rahmat A, Ismail P, Ling KH. 2014. Targets and mechanisms of berberine, a natural drug with potential to treat cancer with special focus on breast cancer. Eur. J. Pharmacol. 740: 584-595.   DOI
21 Remppis A, Bea F, Greten HJ, Buttler A, Wang H, Zhou Q, et al. 2010. Rhizoma coptidis inhibits LPS-induced MCP-1/ CCL2 production in murine macrophages via an AP-1 and NF-${\kappa}B$-dependent pathway. Mediators Inflamm. 2010: 194896.
22 Omer H, McDowell A, Alexeyev OA. 2017. Understanding the role of Propionibacterium acnes in acne vulgaris: the critical importance of skin sampling methodologies. Clin. Dermatol. 35: 118-129.   DOI
23 Dessinioti C, Katsambas AD. 2010. The role of Propionibacterium acnes in acne pathogenesis: facts and controversies. Clin. Dermatol. 28: 2-7.   DOI
24 Farrar MD, Ingham E. 2004. Acne: inflammation. Clin. Dermatol. 22: 380-384.   DOI
25 Kim J, Ochoa MT, Krutzik SR, Takeuchi O, Uematsu S, Legaspi AJ, et al. 2002. Activation of Toll-like receptor 2 in acne triggers inflammatory cytokine responses. J. Immunol. 169: 1535-1541.   DOI
26 Kollisch G, Kalali BN, Voelcker V, Wallich R, Behrendt H, Ring J, et al. 2005. Various members of the Toll-like receptor family contribute to the innate immune response of human epidermal keratinocytes. Immunology 114: 531-541.   DOI