• 제목/요약/키워드: heat treatment effect

검색결과 2,453건 처리시간 0.029초

퀜칭한 SCM 440 강에서 초음파 전파특성에 미치는 템퍼링온도의 영향 (The Effect of Tempering Temperature on Ultrasonic Velocity Property at the Quenched SCM 440 Steel)

  • 이계완;김문일;박은수
    • 열처리공학회지
    • /
    • 제4권3호
    • /
    • pp.54-62
    • /
    • 1991
  • The effect of tempering temperature on the ultrasonic propagation velocity at SCM 440 steel quenched from $870^{\circ}C$ and $1000^{\circ}C$ has been studied by metallurgical and crystallographical observation. The measurements of ultrasonic velocity were made on the specimen by appling an immersion ultrasonic pulse-echo technique with a constant frequency of 10 MHz. The quenched microstructure of this steel was a lath martensite. As the tempering temperature was increased, the martensite was transformed into the tempered martensite composed of cementite and carbide. The ultrasonic velocity increased with increasing the tempering temperature. It was thought that these were resulted from the microstructural transformation. The change of ultrasonic propagation velocity with quenching and tempering heat treatment was resulted from microstrain due to the change of internal stress. Considering these results concerning to the change of ultrasonic propagation velocity. the phenomena of microstructural transformation were estimated. Consequently, it was thought that the degree of quenching and tempered heat treatment of steel could be nondestructively evaluated with the change of ultrasonic propagation velocity.

  • PDF

수열합성 Ba-Ferrite분말의 조성과 자성에 미치는 열처리 효과 (Effects of Heat Treatment on the Composition and Magnetic Properties of the Hydrothermal-Synthesized Ba-Ferrite Powder)

  • 이승호;김중호;김태옥
    • 한국세라믹학회지
    • /
    • 제26권6호
    • /
    • pp.737-746
    • /
    • 1989
  • After Ba-ferrite powders synthesized hydrothermally and its heated powders were dissolved partially with HCl treatment time, the BaO/Fe2O3 mole ratio of dissolved solutions and powders were measured by AAS, also, lattice constants, particle morphology and magnetic properties in HCl treated, heated and no-heated Ba-ferrite powders were abtained by means of XRD, SEM and VSM, respectively. From above analysis results, the effect of Ba/Fe mole ration in suspension(as starting material) on the BaO/Fe2O3 composition and particle characteristics of products were investigated, and the effect of heat treatment on magnetic properties of products examined. The composition, lattice constant and crystal phase of products depend on the Ba/Fe mole ratio in suspension. Ba content in surface or outer part of Ba-ferrite powder is higher than inner and heterogeneous, and the excess Ba ions in the inner part of particle move into the outer by heating, so that the mole ratio of BaO/Fe2O3 in the more jinner approaches more to the stoichiometric composition 1 : 6. The crystallinity, coercivity and saturation magnetization of products are increased by heat treatment, and the heat-treated samples synthesized hydrothermally in lower temperature are appreciated to have better powder characteristics.

  • PDF

$Ni_{0.5}Cu_{0.1}Zn_{0.4}Fe_2O_4$ Ferrite-Rubber Composite의 전파흡수특성에 미치는 열처리 온도의 영향 및 Carbon 첨가효과 (Effect of Carbon Addition and Influence of Heat-treatment Temperature on Electromagnetic Wave Absorbing Properties of $Ni_{0.5}Cu_{0.1}Zn_{0.4}Fe_2O_4$-Rubber Composite)

  • 윤국태;이찬규;박연준
    • 한국자기학회지
    • /
    • 제11권1호
    • /
    • pp.14-20
    • /
    • 2001
  • The structure, shape, size, and magnetic properties of Ni$_{0.5}$Cu$_{0.1}$Zn$_{0.4}$Fe$_2$O$_4$ have been investigated as a function of annealing temperatures. In order to control the microwave absorbing properties of ferrite-rubber composite and the complex losses (magnetic loss and conduction loss), the effect of carbon addition was also studied. It was found that the coercive force decreased with increasing heat-treatment temperatures. Relative complex permeability and reflection loss were measured by the network analyzer. As a result, the natural resonance occurred in the low frequency tinge, and the matching frequency of the ferrite-rubber composite prepared at 130$0^{\circ}C$ was found to be lower. As heat-treatment temperatures were increased, the magnetic loss ($\mu$$_{r}$", $\mu$$_{r}$′) and the dielectric loss ($\varepsilon$$_{r}$"/$\varepsilon$$_{r}$′) were increased. It was caused that the absorption characteristics of the absorber were improved. The conduction loss and magnetic loss were expected to be occurred together because two matching frequencies were shown with carbon addition. It was confirmed that the matching frequency of the microwave absorber could be controlled by controlling heat-treatment temperatures and carbon additions.ons.tions.

  • PDF

A Study on the Properties of MgF2 Antireflection Film for Solar Cells

  • Yang, Hyeon-Hun;Park, Gye-Choon
    • Transactions on Electrical and Electronic Materials
    • /
    • 제11권1호
    • /
    • pp.33-36
    • /
    • 2010
  • $MgF_2$ is a current material used for optical applications in the ultraviolet and deep ultraviolet range. Process variables for manufacturing $MgF_2$ thin film were established in order to clarify the optimum conditions for the growth of the thin film, dependant upon the process conditions, and then by changing a number of the vapor deposition conditions, substrate temperatures, and heat treatment conditions, the structural and optical characteristics were measured. Then, optimum process variables were thus derived. Nevertheless, modern applications still require improvement in the optical and structural quality of the deposited layers. In the present work, in order to understand the composition and microstructure of $MgF_2$, single layers grown on a slide glass substrate using an Electron beam Evaporator (KV-660), were analyzed and compared. The surface substrate temperature, having an effect on the quality of the thin film, was changed from $200^{\circ}C$ to $350^{\circ}C$ at intervals of $50^{\circ}C$. The heat treatment temperature, which also has an effect on the thin film, was changed from $200^{\circ}C$ to $400^{\circ}C$ at intervals of $50^{\circ}C$. The physical properties of the thin film were investigated at various fabrication conditions, such as the substrate temperature, the heat treatment temperature, and the heat treatment time, by X-ray diffraction, and field emission-scanning electron microscopy.

육성 용접부의 기계적 성질에 미치는 열처리조건의 영향 (Effect of heat treatment on mechanical properties of overlay welds)

  • 이기호;김기철;윤의박
    • Journal of Welding and Joining
    • /
    • 제7권4호
    • /
    • pp.30-37
    • /
    • 1989
  • Effect of heat treatment on mechanical properties of an overlay weldment was investigated. Over welding was carried out on the structural C-Mn mild steel substrate to take required test specimens. Shielded metal arc welding process with 13Cr-0.2Ni stick electrode was applied. The heat treatment temperatures and holding times were $450{\circ}C., 550{\circ}C., 650{\circ}C., 750{\circ}C., 850{\circ}C.$ and 0.5hr, 2hr, 10hr, respectively. Mechanical tests and microscopic inspection were also carried out to investigate welds soundness. Test results indicated that carbon migration was dominant near bonded zone. At temperature of around 650.deg. C, carburized layer and decarburized layer were formed remarkably along overlay welds region and C-Mn mild steel region, respectively. The wideth of these layers became wider with increasing heat treatment temperature and/or holding time at the elevated temperature, and this relationship agreed with Larson-Miller parameter. Side bending test results demonstrated that the crack free region of overlay welds could be deduced from the relationship between temperature and holding time.

  • PDF

고강도 냉간압조용 중탄소 Cr-Mo 합금강의 임계간 어닐링시 냉각속도 및 온도의 영향 (Effect of Cooling Rate and Temperature on Intercritical Annealing of Medium-Carbon Cr-Mo Alloy for High Strength Cold Heading Quality Wire Rod)

  • 이종혁;장병록
    • 열처리공학회지
    • /
    • 제36권4호
    • /
    • pp.230-236
    • /
    • 2023
  • The current study deals with the effect of cooling rate and temperature for annealing on medium-carbon Cr-Mo alloy steel, especially for cold heading quality wire rod, to derive the optimum micro-structures for plastic deformation. This is to optimize the spheroidization heat treatment conditions for softening the material. Heat treatment was performed under seven different conditions at a temperature between Ac1 and Ac3, mostly within 720℃ to 760℃, and the main variables at this time were temperature, retention time and cooling rate. Microstructure and phase changes were observed for each test condition, and it was confirmed that they were greatly affected by the cooling rate. It was also confirmed that the cooling rate was changed in the range of 0.1℃/min to 5℃/min and affected by phase deformation and spheroidization fraction. The larger the spheroidization fraction, the lower the hardness, which is associated with the increasing connection of ferrite phases.

Fe 이온이 담지된 BEA 제올라이트 촉매의 열처리 온도에 따른 N2O 분해반응에 대한 영향 (Effect of Fe Ion-Exchanged BEA Zeolite Catalysts on N2O Decomposition Reaction Following Heat-treatment Temperatures)

  • 정기림;이승재;유인수;문승현
    • Korean Chemical Engineering Research
    • /
    • 제51권5호
    • /
    • pp.531-535
    • /
    • 2013
  • 철 이온을 담지시킨 BEA 제올라이트에서 $N_2O$가 분해되는 반응을 조사하여 열처리 온도가 촉매의 활성에 미치는 영향을 고찰하였다. $N_2O$ 분해 반응 실험 결과, Fe/BEA 촉매에 대한 열처리 온도가 증가함에 따라 $N_2O$ 분해 활성이 현저히 줄어들었다. 열처리 온도의 증가에 따른 Fe/BEA 촉매의 입자모양 및 크기의 변화는 크지 않았지만, 열처리 온도 증가에 따라 비표면적이 크게 줄어들었다. 또한 열처리온도가 증가함에 따라 ${\beta}$ 구조의 결정성이 크게 낮아지는 것을 확인하였고, 열처리 온도가 높아질수록 SiO 구조는 증가하거나 크게 변화가 없는 반면, Fe가 골격구조와 결합된 구조는 감소하는 것으로 판단되었다. 이와 같은 결과로 열처리 온도의 증가에 따라 알루미늄과 Fe가 결합된 ${\beta}$ 구조가 붕괴되어 $N_2O$ 분해활성이 크게 저하되는 것으로 사료된다.

압연 클래드된 Ti/Mild steel/Ti 재의 계면확산층과 접합력에 미치는 후열처리온도의 영향 (Effect of Post Heat Treatment Temperature on Interface Diffusion Layer and Bonding Force in Roll Cladded Ti/Mild steel/Ti Material)

  • 이상목;김수민;위세나;배동현;이근안;이종섭;김용배;배동수
    • 대한금속재료학회지
    • /
    • 제50권4호
    • /
    • pp.316-323
    • /
    • 2012
  • The aim of this study is to investigate the effect of post heat treatment on bonding properties of roll cladded Ti/MS/Ti materials. First grade Ti sheets and SPCC mild steel sheets were prepared and then Ti/MS/Ti clad materials were fabricated by a cold rolling and post heat treatment process. Microstructure and point analysis of the Ti/MS interfaces were performed using the SEM and EDX Analyser. Diffusion bonding was observed at the interfaces of Ti/MS. The thickness of the diffusion layer increased with post heat treatment temperature and the diffusion layer was verified as having $({\epsilon}+{\zeta})+({\zeta}+{\beta}-Ti)$ intermetallic compounds at $700^{\circ}C$ and an $({\zeta}+{\beta}-Ti)$ intermetallic compound at $800^{\circ}C$, respectively. The micro Knoop hardness of mild steel decreased with post heat treatment temperature; however, those of Ti decreased at a range of $500{\sim}600^{\circ}C$ and showed a uniform value until $800^{\circ}C$ and then increased rapidly up to $900^{\circ}C$. The micro Knoop hardness value of the diffusion layer increased up to $700^{\circ}C$ and then saturated with post heat treatment. A T-type peel test was used to estimate the bonding forces of Ti/Mild steel interfaces. The bonding forces decreased up to $800^{\circ}C$ and then increased slightly with post heat treatment. The optimized temperature ranges for post heat treatment were $500{\sim}600^{\circ}C$ to obtain the proper formability for an additional plastic deformation process.

용철(熔鐵)에서의 가탄(加炭)에 관(關)한 연구(硏究)(1);가탄(加炭)에 미치는 탄소재(炭素材)의 결정화열처리(結晶化熱處理)의 영향 (Study on Carbon Pick-up in molten iron (I);Effect of Crystallization heat treatment of Carbon-bearing materials on Carbon Pick-up in molten iron)

  • 조원일;이종남
    • 한국주조공학회지
    • /
    • 제3권3호
    • /
    • pp.159-166
    • /
    • 1983
  • In order to develope domestic carburizers, the experiment was carried out by applying crystallization heat treatment to domestic anthracites and also to foreign products to compare with domestic anthracites.The present work was mainly concerned with the effect of their degree of crystallization of carbon-bearing materials on carbon pick-up in molten iron.Those effects were evaluated by the measurement of density, chemical composition, specific electric resistivity, and X-ray intensity of carbon-bearing materials. Experimental results thus obtained were summurized as follows. 1. The degree of crystallization of domestic anthracites and foreign products was increased with increasing heat treatment temperature. 2. The more degree of crystallization, the shorter the dissolving time of domestic anthracites in molten iron was obtained, while that of foreign products was remained constant. 3. As the degree of crystallization of domestic anthracites and foreign products was increased, the carbon content as well as carbon recovery in molten iron was increased.

  • PDF