DOI QR코드

DOI QR Code

Effect of Cooling Rate and Temperature on Intercritical Annealing of Medium-Carbon Cr-Mo Alloy for High Strength Cold Heading Quality Wire Rod

고강도 냉간압조용 중탄소 Cr-Mo 합금강의 임계간 어닐링시 냉각속도 및 온도의 영향

  • JongHyeok Lee (Department of Materials Science and Engineering, Inha University) ;
  • ByoungLok Jang (Department of Advanced Materials Processing and Engineering, Inha Manufacturing Innovation School)
  • 이종혁 (인하대학교 신소재공학과) ;
  • 장병록 (인하대학교 제조혁신전문대학원 첨단소재공정공학과)
  • Received : 2023.06.20
  • Accepted : 2023.07.21
  • Published : 2023.07.30

Abstract

The current study deals with the effect of cooling rate and temperature for annealing on medium-carbon Cr-Mo alloy steel, especially for cold heading quality wire rod, to derive the optimum micro-structures for plastic deformation. This is to optimize the spheroidization heat treatment conditions for softening the material. Heat treatment was performed under seven different conditions at a temperature between Ac1 and Ac3, mostly within 720℃ to 760℃, and the main variables at this time were temperature, retention time and cooling rate. Microstructure and phase changes were observed for each test condition, and it was confirmed that they were greatly affected by the cooling rate. It was also confirmed that the cooling rate was changed in the range of 0.1℃/min to 5℃/min and affected by phase deformation and spheroidization fraction. The larger the spheroidization fraction, the lower the hardness, which is associated with the increasing connection of ferrite phases.

Keywords

References

  1. W. C. Jeong: Kor. Soc. Heat. Treat. 19 (2006) 149.
  2. W. J. Nam: Kor. Soc. Tech. Plast. 11 (2002) 381.
  3. S. J. Maeng and S. H. Jeong: Kor. Inst. Mat. 11 (1988) 1068.
  4. J. M. O'Brien and W. F. Hosford: Mat. Engin. Perf. 6 (1997) 69.
  5. V. A. Alza: Mech. Civ. Engin. 18 (2021) 63.
  6. J. D. Verhoeven: Mat. Mater. Trans. A 31 (2000) 2431.
  7. J. D. Verhoeven and E. D. Gibson: Mat. Mater. Trans. A 29 (1998) 1181.
  8. S. Chattopadhyay and C. M. Sellars: Acta Mater. 1 (1982) 157.
  9. U. G. Gang, J. C. Lee and W. J. Nan: Met. Mater. Int. 5 (2009) 719.
  10. J. H. Kim and T. G. Ha: Trans. Mater. Proc. 22 (2013) 158.
  11. E. ERISIR, S. GuMuS, and O. G. BILIR: Porc. Met. 5 (2013) 15.
  12. F. Hairer, A. Karelova, C. Krempaszky, E. Werner, T. Hebesberger, and A. Pichler: Int. Dr. Semin. (2008) 50.
  13. Z. Tong, G. Zhou, W. Zheng, H. Zhang, H. Zhou, and X. Sun: Metals, 12(2) (2022) 294.
  14. I. S. Bott, L. F. G. Souza, J. C. G. Teixeira, and P. R. Rios: Met. Meter. Trans. A 36 (2005) 443.
  15. K. Abbaszadeh, H. Saghafian, and S. Kheirandish: Mater. Sci. Tech. 28 (2012) 336.
  16. K. Guo, T. Pan, N. Zhang, L. Meng, X. Luo, and F. Chai: Materials, 16(4) (2023) 1607.
  17. M. Muller, D. Britz, L. Ulrich, T. Staudt, and F. Mucklich: Metals, 10(5) (2020) 603.
  18. P. Abbaszadeh, S. Kheirandish, H. Saghafian, and M. H. Goodarzy: Mat. Res. 21(1) (2018) 1.
  19. S. H. Talebi, M. Jahazi, and H. Melkonyan: Materials, 11(8) (2018) 1441.
  20. X. Zhou K. Liu, Z. Liu, Y. Tu, F. Fang and J. Jiang: Mat. Mater. Trans. A 52 (2021) 4181.
  21. Y. Shen, Z. Gu, and C. Wang: Met. Meter. Trans. A 52, (2021) 1581.