Effect of Heat Treatment Temperature on the MgB₂/Fe Wire Prepared with Mechanically Milled and Glycerin Added Boron Powder

Dan-Bi Kim^{a, b, *}, Byung-Hyuk Jun^a, Yi-Jeong Kim^a, Kai Sin Tan^a, Jinho Joo^b, Chan-Joong Kim^a

^a Neutron Science Division, Korea Atomic Energy Research Institude(KAERI), Daejeon, 305-353, Korea ^b School of Advanced Materials Science and Engineering, SungKyunKwan University, Suwon, Gyeonggi, 440-746, Korea

We have fabricated in situ MgB₂/Fe wire using pre-treated boron powder. The boron powder was mechanically ball-milled for 2 hours followed by glycerin (C₃H₈O₃) treatment. The aims of mechanical milling and glycerin treatment were to reduce the grain size of MgB₂ and to achieve homogeneous carbon incorporation into the MgB₂, respectively. A standard in situ MgB₂ wire was also fabricated using as received boron powder for comparison. enhancement of critical current density, J_c was observed with the use of the pre-treated boron powder. Highest J_c was obtained for MgB₂/Fe wire using the pre-treated boron powder heat-treated at 900 °C for 30 min. The influence of heat-treatment temperature on the variations of T_c and J_c was studied with X-ray diffraction and correlated microstructural observation.

Keywords: effect of heat treatment, glycerin added, MgB₂/Fe wire

Acknowledgement

This research was supported by a grant (R-2006-1-248) from Electric Power Industry Technology Evaluation & Planning (ETEP), Republic of Korea.