DOI QR코드

DOI QR Code

Fe 이온이 담지된 BEA 제올라이트 촉매의 열처리 온도에 따른 N2O 분해반응에 대한 영향

Effect of Fe Ion-Exchanged BEA Zeolite Catalysts on N2O Decomposition Reaction Following Heat-treatment Temperatures

  • 투고 : 2013.04.09
  • 심사 : 2013.07.16
  • 발행 : 2013.10.01

초록

철 이온을 담지시킨 BEA 제올라이트에서 $N_2O$가 분해되는 반응을 조사하여 열처리 온도가 촉매의 활성에 미치는 영향을 고찰하였다. $N_2O$ 분해 반응 실험 결과, Fe/BEA 촉매에 대한 열처리 온도가 증가함에 따라 $N_2O$ 분해 활성이 현저히 줄어들었다. 열처리 온도의 증가에 따른 Fe/BEA 촉매의 입자모양 및 크기의 변화는 크지 않았지만, 열처리 온도 증가에 따라 비표면적이 크게 줄어들었다. 또한 열처리온도가 증가함에 따라 ${\beta}$ 구조의 결정성이 크게 낮아지는 것을 확인하였고, 열처리 온도가 높아질수록 SiO 구조는 증가하거나 크게 변화가 없는 반면, Fe가 골격구조와 결합된 구조는 감소하는 것으로 판단되었다. 이와 같은 결과로 열처리 온도의 증가에 따라 알루미늄과 Fe가 결합된 ${\beta}$ 구조가 붕괴되어 $N_2O$ 분해활성이 크게 저하되는 것으로 사료된다.

The effect of heat-treatment temperature on the activity of catalysts was studied by investigating $N_2O$ decomposition reaction in Fe ion-supported BEA Zeolite. As a result of $N_2O$ decomposition reaction experiment, $N_2O$ decomposition activity significantly decreased as heat-treatment temperature of Fe/BEA catalyst increased. the shape and size of the particles of Fe/BEA catalyst following the rise of heat-treatment temperature did not display a significant change. But following the rise of the heat-treatment temperature, its surface area was significantly reduced. Also it was confirmed that as the heat-treatment temperature rose, the crystallization of ${\beta}$ structure was greatly reduced. And as heat-treatment temperature rose, while SiO structure either increased or did not exhibit much change, the structure of Fe bonded with lattice structure was speculated to decrease. From the stated results, it was concluded that the increase of heat-treatment temperature became the cause of the declined activity of catalysts by destruction of its ${\beta}$ structure of bonding aluminium and Fe atoms.

키워드

참고문헌

  1. Korea Institute of Energy Research, "Development of Catalyst and Process for Simultaneous Reduction of $N_2O$/$NO_x$ by Using Single Reductant in Stationary Sources," 1-2(2010).
  2. Perez-Ramirez, J., Kaptejin, F., Mul, G. and Moulijin, J., "Direct $N_2O$ Decomposition over Ex-framework FeMFI Catalysts. Role of Extra-framework Species," Catal. Today, 76, 55-74(2002). https://doi.org/10.1016/S0920-5861(02)00208-0
  3. Yang, W. H. and Kim, M. H., "Catalytic Reduction of $N_2O$ by $H_2$ Over Well-characterized Pt Surfaces," Korean J. Chem. Eng., 23, 908-918(2006). https://doi.org/10.1007/s11814-006-0007-1
  4. Shen, Q., Li, L., Li, J., Tian, H. and Hao, Z., "A Study on $N_2O$ Catalytic Decomposition Over Co/MgO Catalysts," J. Hazard. Mater., 163, 1332-1337(2009). https://doi.org/10.1016/j.jhazmat.2008.07.104
  5. Winter, E. R. S., "The Decomposition of Nitrous Oxide on Metallic Oxides Part II," Catal., 19, 32-40(1970). https://doi.org/10.1016/0021-9517(70)90293-9
  6. Leglise, J., Petunchi, J. O. and Hall, W. H., "$N_2O$ Decomposition Over Iron-exchanged Mordenite," J. Catal., 86(2), 392-399(1984). https://doi.org/10.1016/0021-9517(84)90384-1
  7. Park, J.-H., "Kinetics of $N_2O$ Decomposition over Fe-TNU-9 Zeolite," Eng. Chem., 20(4), 453-458(2009).
  8. Lee, S. J. and Moon, S. H., "Simultaneous Catalytic Reduction of NO and $N_2O$ over Pd-Rh Supported Mixed Metal Oxide Honey-comb Catalysts - Use of $H_2$ or CO as a Reductant," Korean Chem. Eng. Res.(HWAHAK KONGHAK), 47(1), 96-104(2009).
  9. National Institute of Environmental Research, "Integrated Pollution Prevention and Control Reference Document on Best Available Techniques for Waste Incineration," 152(2009).
  10. Camblor, M. A., Corma, A. and Perez-Pariente, J., "Synthesis of Titanoaluminosilicates Isomorphous to Zeolite Beta, Active As Oxidation Catalysts," Zeolites, 13, 82-87(1993). https://doi.org/10.1016/0144-2449(93)90064-A
  11. Reddy, J. S. and Sayari, A., "A Simple Method for the Preparation of Active Ti Beta Zeolite Catalysts," Stud. Surf. Sci. Catal., 94, 309-316(1995). https://doi.org/10.1016/S0167-2991(06)81237-1
  12. Li, C. and Wu, Z, "Microporous Materials Characterized by Vibrational Spectroscopies," Chinese Academy of Sciences.
  13. Dzwigaj, S., Massiani, P., Davidson, A. and Che, M., "Role of Silanol Groups in the Incorporation of V in b Zeolite," J. Mol. Catal. A-Chem., 155, 169-182(2000). https://doi.org/10.1016/S1381-1169(99)00332-5
  14. Caullet, P., Hazm, J., Guth, J., Joly, J., Lynch, J. and Raatz, F., "Synthesis of Zeolite Beta from Nonalkaline Fluoride Aqueous Aluminosilicate Gels Original," Zeolites, v12, p240 (1992). https://doi.org/10.1016/S0144-2449(05)80290-8
  15. Dzwigaj, S., Millot, Y., Methivier, C. and Che, M., "Incorporation of Nb(V) into BEA Zeolite Investigated by XRD, NMR, IR,DR UV-vis, and XPS," Microporous Mesoporous Mater., 130, 162-166(2010). https://doi.org/10.1016/j.micromeso.2009.10.027
  16. Dzwigaj, S., Peltre, M. J., Massiani, P., "Incorporation of Vanadium Species in a Dealuminated $\beta$ Zeolite," Chem. Commun., 1, 87-88(1998).
  17. Dzwigaj, S., "Evidence of Three Kinds of Tetrahedral Vanadium (V) Species in $vsi\beta$ Zeolite by Diffuse Reflectance UV-visible and Photoluminescence Spectroscopies," J. Phys. Chem. B, 104(25), 29, 6012-6020(2000). https://doi.org/10.1021/jp0000331
  18. Bayati, B., Babaluo, A. A. and Karimi, R., "Hydrothermal Synthesis of Nanostructure NaA Zeolite: The Effect of Synthesis Parameters on Zeolite Seed Size and Crystallinity," J. European Ceram. Soc., 28, 2653-26579(2008). https://doi.org/10.1016/j.jeurceramsoc.2008.03.033
  19. Baran, R., Millot, Y., Onfroy, T., Krafft, J.-M. and Dzwigaj, S, "Influence of the Nitric Acid Treatment on Al Removal, Framework Composition and Acidity of BEA Zeolite Investigated by XRD, FTIR and NMR," Microporous Mesoporous Mater., 163, 122-130(2012). https://doi.org/10.1016/j.micromeso.2012.06.055