• Title/Summary/Keyword: heat sources

Search Result 660, Processing Time 0.028 seconds

Natural Convection in a Rectangular Enclosure with Heat Sources at the Bottom (밑면에 열원이 존재하는 밀폐공간에서의 자연대류)

  • Kwon, Y.I.;Kim, S.J.;Kwon, S.S.
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.3 no.3
    • /
    • pp.197-205
    • /
    • 1991
  • A numerical study has been performed to investigate two dimensional natural convection heat transfer in a rectangular enclosure with heat sources of constant temperature at the bottom. Calculations were made for various dimensionless heat source lengths, W/L=0.1-0.5, and positions of heat sources at $Gr=2.57{\times}10^6$, Pr=0.71 and Ks/Kf=28.98. For various positions of heat sources, the maximum local Nusselt numbers generally show X=0.81-0.85 at the bottom and X=0.23 at the top. For various dimensionless heat source lengths, the maximum local Nusselt numbers at the bottom show W/L=0.4 for one heat source, W/L=0.2 for two heat sources with fixed centers, W/L=0.5 for two heat sources with moved centers. Finally the maximum heat transfer at the bottom exhibits in condition of W/L=0.4 for two heat sources with moved centers.

  • PDF

Evaluation of Spreading Thermal Resistance in Symmetrical Four-Heat Generating Electronic Components (4개 대칭배열 발열 전자소자에서의 확산 열저항 산정)

  • Kim Yun-Ho;Kim Seo-Young;Rhee Gwang-Hoon
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.18 no.8
    • /
    • pp.664-671
    • /
    • 2006
  • We propose the correlation to predict the spreading thermal resistance on a plate with symmetrical four heat sources. The correlation transforms four heat sources to a single equivalent heat source and then the spreading thermal resistance can be obtained with the existing equation for a single heat source. When the four heat sources are mounted on a square base plate, the correlation is expressed as a function of the heat source size, the length of base plate, the plate thermal conductivity and the distance between heat sources. Compared to the results of three-dimensional numerical analysis, the spreading thermal resistance by the proposed correlation is in good agreement within 10 percent accuracy.

An Analytical Study on the Preheating Effect of Flat Workpiece in Thermally Assisted Machining by Multi Heat Sources (다중열원 보조가공을 위한 평판 시편의 예열 효과에 관한 해석적 연구)

  • Moon, Sung-Ho;Lee, Choon-Man
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.33 no.8
    • /
    • pp.629-634
    • /
    • 2016
  • Laser-assisted machining (LAM) is one of the most effective methods of processing difficult-to-cut materials, such as titanium alloys and various ceramics. However, it is associated with problems such as the inability of the laser heat source to generate an appropriate preheating temperature. To solve the problem, thermally assisted machining with multiple heat sources is proposed. In this study, thermal analysis of multiple heat sources by laser and arc is performed according to power, heat source size, and leading heat source position. Then, the results are analyzed according to each condition. The results of this analysis can be used as a reference to predict preheating temperature in thermally assisted machining with multiple heat sources.

A Study on the Preheating Effect of Multi-Heat Sources using Laser Plasma in the Thermally Assisted Machining of a High-Melting-Point Material (고융점 소재의 열 보조 가공에서 레이저 -플라즈마 다중열원의 예열 효과에 대한 연구)

  • Lee, Choon-Man;Kim, Seong-Gyu
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.18 no.10
    • /
    • pp.93-98
    • /
    • 2019
  • Recently, with the development of the aerospace and automotive industries, the demand for high-melting-point materials has increased. However, high-melting-point materials are difficult to cut through conventional machining methods. Thermally assisted machining (TAM) is a method for improving the machinability by preheating the materials. A laser, the most commonly used device for TAM, has high efficiency through local preheating but is not sufficient for maintaining a high preheating temperature due to rapid cooling. However, the use of multi-heat sources can supplement the disadvantage of a single heat source. The high preheating temperature can be maintained with a wide and deep heat-affected zone (HAZ) by multi-heat sources. The purpose of this study is to analyze the preheating effects of multi-heat sources using laser plasma. Thermal analysis and preheating experiments were carried out. As a result, the high preheating effect of multi-heat sources compared with a single heat source was verified.

Cooling Characteristics of a Parallel Channel with Protruding Heat Sources Using Convection and Conduction Heat Transfer (돌출된 열원이 있는 채널에서 대류와 전도열전달을 이용한 냉각특성)

  • 손영석;신지영
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.14 no.11
    • /
    • pp.923-930
    • /
    • 2002
  • Cooling characteristics of a parallel channel with protruding heat sources using convection and conduction heat transfer are studied numerically. A two-dimensional model has been developed for numerical prediction of transient, compressible, viscous, laminar flow, and conjugate heat transfer between parallel plates with uniform block heat sources. The finite volume method is used to solve the problem. The assembly consists of two channels formed by two covers and one printed circuit board which has three uniform heat source blocks. Six different cooling methods are considered to find out the most efficient cooling method in a given geometry and heat sources. The velocity and temperature fields of cooling medium, the temperature distribution along the block surface, and the maximum temperature in each block are obtained. The results are compared to examine the cooling characteristics of the different cooling methods.

A Study on the Performance Evaluation of Combined Heat Pump System according to the Ratio of Ground Heat Source and Water Heat Source (지열원 및 수열원 비율에 따른 복합열원 히트펌프시스템 성능 평가 연구)

  • Park, Sihun;Ko, Yujin;Min, Joonki
    • Journal of the Korean Society for Geothermal and Hydrothermal Energy
    • /
    • v.17 no.2
    • /
    • pp.11-19
    • /
    • 2021
  • In this study, combined heat source heat pump system was implemented with 4 single heat source heat pumps each applied with a geothermal source and a water source. Five cases (Case1~Case5) were configured to conduct a performance comparison and analysis of the combined heat source heat pump system. First of all, as a result of analyzing the heat source, the case when 4 ground heat sources were applied (Case1) showed a uniform EST(Entering Source Temperature) distribution throughout the year since it is less affected by outside air compared to the case when 4 water heat sources were applied (Case5). In both winter and summer, the ground heat source maintained higher EST than the water heat source. Therefore, the system with high ratio of geothermal sources is advantageous for heating, and with high ratio of water heat sources is advantageous for cooling.

Effects of Thermal Interaction on Natural Convection From Discrete Heat Sources Mounted on a Vertical Plate (수직평판에 부착된 불연속 열원에 의한 자연대류에서 열원간의 열적 상호간섭에 관한 연구)

  • Park, H.S.;Choo, H.L.;Riu, K.J.
    • Solar Energy
    • /
    • v.18 no.4
    • /
    • pp.39-47
    • /
    • 1998
  • The natural convection heat transfer in a vertical plate with discrete heat sources was studied experimentally. The particular interest was the thermal interaction of the heat sources. In this study, the radiative and conductive heat transfer were considered as heat loss, Thus, the net convective heat transfer rate was presented as adiabatic temperature and thermal wake function. As a results, for non-uniform heating condition, heat input ratio(q1/q2) was most dominant parameter for the thermal wake function. The convective heat transfer rate is decreased with the increasing of channel ratio. For the range of $7.50{\times}10^5<Rac<8.66{\times}10^6$, a useful correlation was proposed as a function of channel Rayleigh number.

  • PDF

Heat Conduction Analysis of Spreaders with Concentrated Heat Sources-Thermal Concentration Effect in Cooling Electronic Devices- (집중열원이 있는 방산판의 열전도 해석-전자부품 냉각에서의 열집중 현상-)

  • 최상민
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.13 no.4
    • /
    • pp.726-733
    • /
    • 1989
  • Conduction heat transfer in heat spreaders with concentrated heat sources is analyzed by finite element method calculation and the results are compared to analytical solutions for simplified cases. The local temperature rise is dependent on the heat flux, thermal conductivity of the spreader material, and the contact size of the heat source. The effect of the adjacency of other heat sources is also examined.

Effects of Symmetrically Arranged Heat Sources on the Heat Release Performance of Extruded-Type Heat Sinks (열원의 대칭 배열에 따른 압출형 히트싱크의 방열성능 연구)

  • Ku, Min Ye;Shin, Hon Chung;Lee, Gyo Woo
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.40 no.2
    • /
    • pp.119-126
    • /
    • 2016
  • In this study we investigated the effects of symmetrically arranged heat sources on the heat release performances of extruded-type heat sinks through experiments and thermal fluid simulations. Also, based on the results we suggested a high-efficiency and cost-effective heat sink for a solar inverter cooling system. In this parametric study, the temperatures between heaters on the base plate and the heat release rates were investigated with respect to the arrangements of heat sources and amounts of heat input. Based on the results we believe that the use of both sides of the heat sink is the preferred method for releasing the heat from the heat source to the ambient environment rather than the use of a single side of the heat sink. Also from the results, it is believed that the symmetric arrangement of the heat sources is recommended to achieve a higher rate of heat transfer. From the results of the thermal fluid simulation, it was possible to confirm the qualitative agreement with the experimental results. Finally, quantitative comparison with respect to mass flow rates, heat inputs, and arrangements of the heat source was also performed.

Effect of the variation of base thickness on the heat release performance of the heat sink (히트싱크 베이스의 두께 변화가 방열성능에 미치는 영향)

  • Kim, Jung Hyun;Lee, Gyo Woo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.15 no.8
    • /
    • pp.4749-4755
    • /
    • 2014
  • In this study, to maximize the heat release from the heat generating environment, such as a high-capacity inverter, the heat release performance of the extruded-type heat sinks with the variation of the base thickness were investigated using the experimental and numerical methods. The base thickness was varied from 5 to 14 mm. The heat release was characterized by the amount of heat released through the heat sink, the surface temperature of heat sink base between the heat sources, and temperature of heat sources. The surface temperatures between heat sources and the amounts of heat release were improved more as the base thickness was decreased. In contrast, the temperatures of the heat sources decreased with increasing base thickness. Based on the case study of these heat sinks, it is believed that a heat sink with a 9.5mm-thick base was optimized for the heat release.