• 제목/요약/키워드: heat of hydration analysis

검색결과 207건 처리시간 0.036초

석회석 미분말을 혼입한 시멘트 페이스트의 수화반응 및 역학적 특성 분석에 관한 연구 (A Study on Hydration kinetics and Mechanical Properties of Cement Paste Incoporating Limestone Filler)

  • 신기수;방미진;박기봉
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2017년도 춘계 학술논문 발표대회
    • /
    • pp.230-231
    • /
    • 2017
  • The addition of a limestone filler(LF) to fill into the voids between cement and aggregate particles can reduce the cementitious paste volume. This paper aim to evaluate the influence of LF contents on the hydration kinetics and compressive strength. Hydration kinetics were evaluate using heat of hydration, ignition loss and thermal analysis. The heat of hydration was measured using Isothermal Calorimetry. The degree of hydration was measured using ignition loss. Hydration product analysis was carried out by Thermal Gravimetric and Differential Thermal Analysis. The results show that the addition of LF reduces not only the initial setting time and heat of hydration peak, also degree of hydration and rate of strength development at early age increase with the addition of LF. It can be concluded the LF fills the pore between cement particles due to formation of carboaluminate, which may accelerate the setting of cement pastes.

  • PDF

Degree of hydration-based thermal stress analysis of large-size CFST incorporating creep

  • Xie, Jinbao;Sun, Jianyuan;Bai, Zhizhou
    • Steel and Composite Structures
    • /
    • 제45권2호
    • /
    • pp.263-279
    • /
    • 2022
  • With the span and arch rib size of concrete-filled steel tube (CFST) arch bridges increase, the hydration heat of pumped mass concrete inside large-size steel tube causes a significant temperature variation, leading to a risk of thermal stress-induced cracking during construction. In order to tackle this phenomenon, a hydration heat conduction model based on hydration degree was established through a nonlinear temperature analysis incorporating an exothermic hydration process to obtain the temperature field of large-size CFST. Subsequently, based on the evolution of elastic modulus based on hydration degree and early-age creep rectification, the finite element model (FEM) model and analytical study were respectively adopted to investigate the variation of the thermal stress of CFST during hydration heat release, and reasonable agreement between the results of two methods is found. Finally, a comparative study of the thermal stress with and without considering early-age creep was conducted.

지반 깊이 및 열특성 영향에 따른 매스콘크리트의 수화열 해석 (A Parameter Study on Heat of Hydration in Mass Concrete Affected by Foundation Depth and Various Thermal Properties)

  • 채숙희;양성철;박종원
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2002년도 가을 학술발표회 논문집
    • /
    • pp.799-804
    • /
    • 2002
  • This paper is mainly Intended to show an effect of foundation depth on heat of hydration in mass concrete. From the analysis, it was found that the foundation depth which is not affected by the heat conduction is more than 5 m. But this study shows that, an optimum foundation depth for the FEM analysis for heat of hydration in mass concrete is approximately 1 m from this study. And in order to study tile significance of various parameters, a sensitivity analysis of heat transfer in mass concrete is performed and the amount of heat liberated at complete hydration of unit weight of cement and the reaction velocity of hydration are the most sensitive parameters factors of other various parameters.

  • PDF

혼화재를 사용한 콘크리트의 수화모델 (A Hydration Model for Blended Concrete utilizing Secondary Cementitious Powders)

  • 노재명;변근주;송하원
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2004년도 춘계 학술발표회 제16권1호
    • /
    • pp.140-143
    • /
    • 2004
  • Heat of hydration of concrete under different curing temperatures can be characterized with knowledge of the thermal activity, the heat rate at the reference temperature, and the total heat of hydration of the mixture. The so-called multi-component hydration model incorporates the effect of following variables: cement chemical composition, cement fineness, secondary cementitious powders, mixture proportions, and concrete properties. However, the model does not consider the use of silica fume as a secondary cementitious powder. Therefore, the model that quantifies the heat of hydration due to the use of silica fume is needed. In this thesis, the effects of silica fume on heat of hydration are evaluated and the influence on the heat of hydration are also quantified to be included in the model, so that the analysis using modified multi-component hydration model for silica fume concrete provides more accurate results than normal concrete.

  • PDF

수화발열량차 및 단열양생 공법을 활용한 매스콘크리트의 현장적용 (Field Application of Mass Concrete Applying Hydration Heat Differential Method and Insulation Curing Method)

  • 한준희;임군수;신세준;전충근;김종;한민철
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2023년도 봄 학술논문 발표대회
    • /
    • pp.227-228
    • /
    • 2023
  • This study is tocompare and analyze the results of hydration heat analysis and on-field measurements using the method with hydration heat difference and insulation curing method for controlling hydration heat in mass concrete. As a result of the analysis, the temperature difference between the center and the surface was predicted very similarly, and the mass concrete surface was controlled to a safe level when evaluating with a temperature crack index, and after being finished, it was confirmed that there was no hydration crack.

  • PDF

저발열 결합재 및 CGS를 잔골재로 치환한 매스콘크리트의 수화열 해석 (Hydration Heat Analysis of Mass Concrete Replacement of Low Heat Binder and CGS with Fine Aggregate)

  • 한준희;임군수;최일경;윤치환;한민철;한천구
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2021년도 봄 학술논문 발표대회
    • /
    • pp.235-236
    • /
    • 2021
  • This study evaluated temperature distribution through adiabatic temperature rising test and hydration heat Analysis as a performance verification to utilize CGS as a hydration heat reduction material for mass concrete when replacing it with fine aggregate. According to the analysis, the temperature difference between the center and the surface was the highest at about 30℃, followed by the CGS 50% at 26℃ and the low heat combiner FA 30% at 23℃.

  • PDF

벽체 타설길이별 수화열 해석 (Hydration Heat Analysis of Wall according to Placement Length)

  • 김태홍;하재담;유재상;이종열;권영호;배수호
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2003년도 가을 학술발표회 논문집
    • /
    • pp.301-304
    • /
    • 2003
  • Nowadays, hydration heat analysis using FEM is common in thermal crack control of concrete structure. Many kinds of general FEM programs for hydration heat analysis are used in practice. But there are some problems in this using. In this study hydration heat analysis of wall according to placement length are performed. In this results we could get two conclusions. First, general structures like wall having general geometry and construction condition have similar behavior. So it is not necessary to analysis thermal crack in every case. Second, the results of 2D analysis is possible to be applied instead of those of 3D analysis because the results of 2D analysis is similar to 3D analysis in long wall having about 15~18m or over length at 3m height.

  • PDF

원자로건물 외벽 타설 높이 산정을 위한 수화열 해석 (Analysis on Heat of Hydration for Height of Shell Concrete Pouring in Reactor Containment Building)

  • 김좌영;박종혁;이한우;방창준
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2012년도 추계 학술논문 발표대회
    • /
    • pp.165-166
    • /
    • 2012
  • A thermal stresses by heat of hydration was analyzed according to a change of a pour height in reactor containment building. In case of more than 3.6m pouring height a crack index by heat of hydration analysis resulted in less than 1 because there is not a construction joint of vertical direction and for a self-restraint effect of circumferential section shape. Therefore detailed consideration on a mixture proportion of binder type, quantity in concrete and selection of a form in seasonal air temperature is needed for a control of tensile stress by heat of hydration.

  • PDF

FAC 및 CGS 치환율에 따른 매스 콘크리트의 수화열 해석 (Hydration Heat Analysis of Mass Concrete according to FAC and CGS Replacement Rates)

  • 김수호;백성진;한수환;한준희;김종;한민철
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2022년도 봄 학술논문 발표대회
    • /
    • pp.158-159
    • /
    • 2022
  • This study analyzed the temperature stress through mixtures mass concrete hydration heat analysis according to the replacement rates of FAC and CGS. As a result of the analysis, it was possible to confirm the effect of reducing hydration heat when CGS is substituted for the low heat mixture of mass concrete. However, the stress of the FAC+CGS combination exceeded the tensile stress. It is believed that it is necessary to apply the insulating sheet of the surface part and reduce the unit weight of cement.

  • PDF

Effects of multi-walled carbon nanotubes on the hydration heat properties of cement composites

  • Ha, Sung-Jin;Rajadurai, Rajagopalan Sam;Kang, Su-Tae
    • Advances in concrete construction
    • /
    • 제12권5호
    • /
    • pp.439-450
    • /
    • 2021
  • In recent years, nano-reinforcing materials are widely utilized in cement composites due to their unique multifunctional properties. This study incorporated multi-walled carbon nanotubes (MWCNTs) into the cementitious composites at ratios of 0.1%, 0.3%, and 0.5%, and investigated their influence on the flowability, mechanical strength, and hydration heat properties. The addition of MWCNTs enhanced the compressive and split tensile strengths approximately by 18-51%. In the semi-adiabatic temperature rise test, the internal hydration heat of the composites reduced by 5%, 9%, and 12% with the increase of MWCNTs in 0.1%, 0.3%, and 0.5%. This study further performed hydration heat analysis and estimated the adiabatic temperature rise, thermal stress, and thermal crack index. The internal hydration heat of the concrete decreased by 5%, 10%, and 13% with the increase of MWCNTs. The thermal stress of the concrete decreased with increase in the addition of MWCNTs, and the obtained temperature crack index was effective in controlling the thermal cracks.