• Title/Summary/Keyword: heat diffusion

Search Result 909, Processing Time 0.025 seconds

Combustion Characteristics of Synthesis Gas Generated in Waste Pyrolysis Process (폐기물 열분해과정에서 발생된 합성가스의 연소 특성)

  • Ahn, Yong-Soo;Hwang, Sang-Soon;Lee, Sung-Ho;Lee, Hyup-Hee
    • 한국연소학회:학술대회논문집
    • /
    • 2003.05a
    • /
    • pp.143-150
    • /
    • 2003
  • The synthesis gas generated in waste pyrolysis melting process which consists of pyrolysis of waste and melting process of ash is known to be an alternative fuel. Since the compositopn of synthesis gas is much different from other synthesis gases, the fundamental combustion characteristics are analyzed in this study. The radiation heat heat flux is used to estimate the heat flux from flames made by many combinations of fuel and oxidant supply. The results show that the synthesis gas needs much more amount of oxidant for equivalent heat flux to methane flame and the inverse diffusion flame type for synthesis gas burner is suitable for better radiation heat transfer.

  • PDF

Thermal Transport Phenomena in the FET Typed MWCNT Gas Sensor with the 60 μm Electrode Distance (60 μm의 전극 간극을 갖는 FET식 MWCNT 가스센서에서 열 유동 현상)

  • Jang, Kyung-Uk
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.28 no.6
    • /
    • pp.403-407
    • /
    • 2015
  • Generally, MWCNT, with thermal, chemical and electrical superiority, is manufactured with CVD (chemical vapor deposition). Using MWCNT, it is comonly used as gas sensor of MOS-FET structure. In this study, in order to repeatedly detect gases, the author had to effectively eliminate gases absorbed in a MWCNT sensor. So as to eliminate gases absorbed in a MWCNT sensor, the sensor was applied heat of 423[K], and in order to observe how the applied heat was diffused within the sensor, the author interpreted the diffusion process of heat, using COMSOL interpretation program. In order to interpret the diffusion process of heat, the author progressed modeling with the structure of MWCNT gas sensor in 2-dimension, and defining heat transfer velocity($u={\Delta}T/{\Delta}x$), accorded to governing equation within the sensor, the author proposed heat transfer mechanism.

An Analysis of Axisymmetric Two Dimensional Heat Diffusion Equation to Measure the Thermal Diffusivity of Layered Materials (積層材料의 熱擴散係數測定을 위한 軸對稱 二次元 熱擴散方程式의 解析)

  • 김진원;이흥주
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.10 no.3
    • /
    • pp.349-356
    • /
    • 1986
  • For the extension of application in flash method measuring the thermophysical properties of materials, the heat diffusion equation with the heat transfer loss from front, rear, and circumferential surfaces of two layer cylinderical sample is mathematically analyzed by means of Green's function for axially symmetric pulse heating on the front of samples. The solutions are applied to determine the unknown thermal diffusivity of the two materials and analyzed the measurement error due to heat loss and finite pulse time effects.

A study on the Al cementation and formation of corrosion-resisting, hardening layer on the steel surface by the arc spray method (아크 용사법에 의한 강재표면에의 Aluminum침수 및 내식, 경화성 피막형성에 관한 연구)

  • 김영식;배차헌;오재환;문경만
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.13 no.2
    • /
    • pp.64-77
    • /
    • 1989
  • In this study, the experiments were carried out for the purpose of establishment of aluminium cementation to steel surface by diffusible heat treatment after making the coated film onto the substrate by arc spray method. Also, the microstructure and mechanical properties of the cementation layer produced by this study were inspected for various heat treatment and spraying conditions. Main results obtained are as follow ; 1. The coating film characteristics which have excellent errosion-resistance, high temperature oxidation-resistance are obtained by aluminium penetration heat treatment after making the sprayed aluminum coating film onto the steel substrate. 2. Aluminium diffusion penetration takes place at higher temperature than 660.deg.C, and the more heat treatment time and the higher heat treatment temperature adopted, the deeper diffusion layer obtained. 3. Insert gas arc spraying using argon gas as the carrier gas higher improvement of mechanical property than that of compressed air environment. 4. The coating film characteristics appeared to be improvement of adhesive property, porosity plugging effect by heat treatment in air environment.

  • PDF

An Automatic Contour Detection of 2-D Echocardiograms Using the Heat Anisotropic Diffusion Method (Heat Anisotropic Diffusion 방법을 이용한 2차원 심초음파도의 경계선 자동검출)

  • Shin, Dong-Jo;Jung, Jung-Wan;Kim, Hyouk;Kim, Dong-Youn
    • Proceedings of the KOSOMBE Conference
    • /
    • v.1994 no.12
    • /
    • pp.9-13
    • /
    • 1994
  • The Heat Anisotropic Diffusion Method has shown very effective for the contour detection of 2-D echocardiogram. To implement this algorithm, we have to choose the parameter C, K, and the threshold level. The choice of C and K are not very sensitive for the good edge detection of the echocardiogram, however the choice of the threshold level is very critical. Until now the threshold level is chosen by the trial and error method. In this paper, we present an automatic threshold decision method from the histogram of the gradient of boundary-like pixels.

  • PDF

Characteristics of Liquid Phase Diffusion Bonded Joints Using Newly Developed Ni-3Cr-4Si-3B Insert Metal of Heat Resistant Alloy (신개발 Ni-3Cr-4Si-3B 삽입금속으로 액상확산접합한 내열주강 접합부의 특성)

    • Journal of Welding and Joining
    • /
    • v.18 no.6
    • /
    • pp.62-67
    • /
    • 2000
  • Metallurgical characteristics of bonded region and high temperature mechanical properties of heat resistant alloy, Fe-35Ni-26Cr during liquid phase diffusion bonding were investigated employing AM17 insert metal. The insert metal for bonding, AM17 was newly developed Ni-base metal using interpolation method. Bonding of specimens were carried out at 1,403~1,463K for 600s in vacuum. The microconstituents in the bonded interlayer disappeared in the bonding temperature over 1,423K. The microstructures, alloying elements and hardness distribution in the base metal. The tensile strength and elongation of the joints at elevated temperatures were the same level as one of the base metal in the bonding temperature over 1,423K. The creep rupture strength and rupture lives of joints were almost identical to those of base metal.

  • PDF

Operating Characteristics of a Bubble Pump for Diffusion-Absorption Refrigerator (확산형 흡수식 냉동기용 기포펌프의 운전특성에 관한 연구)

  • 이현경;김선창;이재헌
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.13 no.9
    • /
    • pp.878-887
    • /
    • 2001
  • Experimental investigation has been carried out to examine the operating characteristics of a bubble pump for diffusion absorption refrigerator. The effects of heat input and delivery height on generation rate of refrigerant vapor and circulation rate of solution have been investigated. as a result heat input and delivery height increase, circulation rate of solution increases. And the smaller the tube diameter, the larger the circulation rate of solution. Pumping ratio increases to a critical point and then decrease with the increase of heat input, and it increases with the increase in delivery height. In this paper, Marcus's analytical theory was also examined. It was found that the Marcus\`s analytical theory of a bubble pump was not appropriate for a bubble pump using ammonia aqueous solution as a working fluid.

  • PDF

Analysis of Transient Thermal Characteristics in a Gas-Loaded Heat Pipe (가스내장 히트파이프의 과도 열특성 해석)

  • 박병규;김근오;김무근
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.13 no.6
    • /
    • pp.514-523
    • /
    • 2001
  • The thermal performance characteristics of gas-loaded heat pipe(GLHP) were investigated by using transient diffuse-front model. Numerical evaluation of the GLHP is made with water as a working fluid and Nitrogen as control gas in the stainless steel tube. The transient vapor temperature and wall temperature were obtained. It is found that the temperature profiles and gas mole fraction distribution have been mainly influence by the diffusion between working fluid and noncondensable control gas in the condenser of GLHP. It is also found that he large power input make the diffusion region smaller.

  • PDF

The characteristics of laminar diffusion flame impinging on the wall (벽면 충돌 층류 확산화염의 특성)

  • Park,Yong-Yeol;Kim, Ho-Yeong
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.20 no.3
    • /
    • pp.979-987
    • /
    • 1996
  • A theoretical study for the laminar round jet diffusion flame impinging on the wall was carried out to predict the characteristics and structure of impinging jet flame and heat transfer to the wall. Finite chemistry via Arrhenius equation was adopted as the combustion model. All the transport properties were considered as the variable depending on the temperature and composition. For the parametric study, the distance from nozzle to perpendicular wall and Reynolds number at nozzle exit were chosen as the major parameters. As the results of the present study, the characteristics of flow field and the distributions of temperature, density and each chemical species were obtained. The heat transfer rate from flame to the wall and the effective heating area were calculated to investigate the influence of the major parameters on the heat transfer characteristics.

Finite-element Method for Heat Transfer Problem in Hydrodynamic Lubrication

  • Kwang-June,Bai
    • Bulletin of the Society of Naval Architects of Korea
    • /
    • v.19 no.4
    • /
    • pp.19-29
    • /
    • 1982
  • Galerkin's finite element method is applied to a two-dimensional heat convection-diffusion problem arising in the hydrodynamic lubrication of thrust bearings used in naval vessels. A parabolized thermal energy equation for the lubricant, and thermal diffusion equations for both bearing pad and the collar are treated together, with proper juncture conditions on the interface boundaries. it has been known that a numerical instability arises when the classical Galerkin's method, which is equivalent to a centered difference approximation, is applied to a parabolic-type partial differential equation. Probably the simplest remedy for this instability is to use a one-sided finite difference formula for the first derivative term in the finite difference method. However, in the present coupled heat convection-diffusion problem in which the governing equation is parabolized in a subdomain(Lubricant), uniformly stable numerical solutions for a wide range of the Peclet number are obtained in the numerical test based on Galerkin's classical finite element method. In the present numerical convergence errors in several error norms are presented in the first model problem. Additional numerical results for a more realistic bearing lubrication problem are presented for a second numerical model.

  • PDF