• Title/Summary/Keyword: headspace GC-MS

Search Result 113, Processing Time 0.024 seconds

Comparison Solid Phase Microextraction with Purge & Trap on the GC/MS Analysis of Volatile Organic Compounds in Biota Samples (Solid Phase Microextraction 및 Purge & Trap을 이용한 생물시료 중 휘발성 유기화합물의 GC/MS 분석비교)

  • Ahn, Yun-Gyong;Seo, Jong-Bok;Hong, Jongki
    • Analytical Science and Technology
    • /
    • v.14 no.5
    • /
    • pp.392-399
    • /
    • 2001
  • The analysis of n-butylbenzene and 1,2-dibromo-3-chloropropane (DBCP) as volatile organic compounds in biota samples was performed by gas chromatography/mass spectrometry-selected ion monitoring mode. The target compounds, n-butylbenzene and DBCP, in biota samples were extracted by headspace solid phase microextraction (SPME) with $100{\mu}m$ polydimethyl siloxane (PDMS) fiber and purge & trap method. The extraction recoveries of these compounds obtained by SPME was 85.8% for n-butylbenzene and 92.4% for DBCP, respectively. Each value of method detection limit were $0.15{\mu}g/kg$ and $0.05{\mu}g/kg$, respectively. While in the case of purge & trap method, the extraction recovery was 115.2% for n-butylbenzene, 80.9% for DBCP and method detection limit were $0.04{\mu}g/kg$ and $0.70{\mu}g/kg$, respectively. The extraction yields and detection limits of these compounds obtained by purge & trap were equivalent to those by SPME.

  • PDF

Mulberry Paper Bag μ-Solid Phase Extraction for the Analysis of Five Spice Flavors by Gas Chromatography-Mass Spectrometry

  • Yoon, Ok-Kyung;Lee, Dong-Sun
    • Bulletin of the Korean Chemical Society
    • /
    • v.30 no.1
    • /
    • pp.35-42
    • /
    • 2009
  • Headspace micro solid phase extraction using mulberry paper bag (HS-MPB-$\mu$-SPE) has been developed and validated for the analysis of volatile flavor compounds from five spice by gas chromatography-mass spectrometry (GC/MS). HS-MPB-$\mu$-SPE was performed with adsorbent particles enclosed inside a mulberry paper bag. Four different kinds of adsorbents such as Tenax TA, Porapack Q, dimethylpolysiloxane and polyethylene glycol were tested. The extraction solvents compared were petroleum ether, methylene chloride, and chloroform. Better results were obtained when Tenax TA and petroleum ether were used. The limit of detection (LOD) and the limit of quantitation (LOQ) were in the range of 1.3 ng/mL and 4.3 ng/mL, respectively, for o-cymene as a model compound of monoterpene. Proposed method showed good reproducibility (3.3%, RSD) and good recoveries (94.0%). The HS-MPB- μ-SPE is very simple to use, inexpensive, rapid, requires small sample amounts and solvent consumption. Because the solvent for extraction is reduced to only a very small volume (0.6 mL), there is minimal waste or exposure to toxic organic solvent and no further concentration step. This method allows successful characterization of the headspace in contact with the five spice sample. Strong trans-anethole from star anise or fennel is a characteristic flavor of five spice powders. HS-MPB-$\mu$-SPE combined with GC/MS can be a promising technique for the broad spectrum measurement of volatile aroma compounds from solid spices.

Volatile Analysis of Commercial Korean Black Raspberry Wines (Bokbunjaju) Using Headspace Solid-phase Microextraction (Headspace Solid-phase Microextraction을 이용한 시판 복분자주의 휘발성분 분석)

  • Lee, Seung-Joo
    • Korean Journal of Food Science and Technology
    • /
    • v.46 no.4
    • /
    • pp.425-431
    • /
    • 2014
  • In this study, the volatile compounds in 24 commercial Korean black raspberry wines were isolated by headspace solid-phase microextraction and analyzed by gas chromatography-mass spectrometry (GC-MS). A total of 43 volatile components, including 15 esters, 12 terpenes, 7 alcohols, 4 acids, 3 ketones, and 2 aldehydes, were identified. Ethyl esters and alcohols such as ethyl acetate, ethyl octanoate, isoamyl alcohol, and phenethyl alcohol were the most represented groups among the quantified volatiles. In particular, various terpenes such as DL-limonene, linalool, alpha-terpineol, and myrtenol were identified. The differences in volatile components among the 24 black raspberry wines and possible sample grouping were examined by applying principal component analyses to the GC-MS data sets. The first and second principal components explained 43.9% of the total variation across the samples. No apparent sample groupings were observed according to manufacturing locations. The samples KU, BH, SR, and MO showed higher overall levels in the concentrations of terpenes originating from black raspberry, while other samples such as BB and HB, showed higher in ethyl ester and alcohol contents produced by yeast fermentation, respectively.

Measurement of Aldehydes in Replacement Liquids of Electronic Cigarettes by Headspace Gas Chromatography-mass Spectrometry

  • Lim, Hyun-Hee;Shin, Ho-Sang
    • Bulletin of the Korean Chemical Society
    • /
    • v.34 no.9
    • /
    • pp.2691-2696
    • /
    • 2013
  • The electronic cigarette (E-cigarette) is a battery-powered device that aerosolizes nicotine so that it is readily delivered into the respiratory tract. The analytical data regarding the substances present in E-cigarettes are very limited. The aim of this study was to measure the concentration of aldehydes-formaldehyde (FA), acetaldehyde (AA) and, acrolein (AL)-in 225 replacement liquid brands from 17 E-cigarette shops sold in the Republic of Korea by headspace solid-phase micro extraction and gas chromatography-mass spectrometry (HS-SPME GC-MS). The concentration range of FA and AA was 0.02-10.09 mg/L (mean = 2.16 mg/L, detected in 207 of 225 samples) and 0.10-15.63 mg/L (mean = 4.98 mg/L, detected in all samples), respectively. AL was not detected in any of 225 replacement liquids. FA and AA were originally present in almost all replacement liquids of electronic cigarettes.

Determination of the presence of benzene in vitamin drinks using headspace - solid phase microextraction and gas chromatography - mass spectrometry (Headspace Solid Phase Microextraction-Gas Chromatography/Mass Spectrometry를 이용한 비타민드링크 제품 중 Benzene의 미량분석)

  • Kim, Jong-Hun;Lee, Kyung-Min
    • Analytical Science and Technology
    • /
    • v.20 no.3
    • /
    • pp.237-245
    • /
    • 2007
  • The presence of benzene in 31 products of vitamin drinks purchased from 20 retail outlets was determined using headspace solid phase microextraction (HS-SPME) and gas chromatography-mass spectrometry (GC-MS). The sample (25 ml) was stirred at 1200 rpm for 4 min using a magnetic bar with a $100{\mu}m$ SPME fiber as an adsorbent for benzene which was then desorbed from the fiber for 1 min in the GC injector. Quantitation was achieved using the standard addition method. The limit of detection was determined as 0.56 ng/ml and over a concentration range 0-40 ng/ml the coefficient of correlation was greater than 0.999. The concentration of benzene in the drinks examined was in the range not detectable to 47.35 ng/ml. Benzene was detected in 15 of the drinks with concentration in 5 of them greater than 10 ng/ml which is the limit set for the presence of benzene in the Drinking Water Regulations. The concentrations of benzene in the 5 drinks which exceeded the limit of 10 ng/ml were 16.99, 35.14, 16.03, 47.35 and 14.28 ng/ml respectively.

Isolation of Volatile Allelochemicals from Leaves of Perilla frutescens and Artemisia asiatica (들깨(Perilla frutescens)와 쑥(Artemisia asiatics)잎으로부터 휘발성 타감 작용 성분의 분리)

  • Lim, Sun-Uk;Seo, Young-Ho;Lee, Young-Guen;Baek, Nam-In
    • Applied Biological Chemistry
    • /
    • v.37 no.2
    • /
    • pp.115-123
    • /
    • 1994
  • Allelopathic activity of the volatiles from leaves of Perilla frutescens an Artemisia asiatica was determined on the basis of bioassay, which tested germination and seedling growth of radish, rice, mung bean and lettuce. Seedling growth was more inhibited by phytotoxic volatiles than germination. Volatile components collected by headspace cold trapping-Tenax GC adsorption were analyzed by GC-MS. Fifteen volatile components in P. frutescens and 15 components in A. asiatica were identified. By steam distillation-extraction, 4 flavor components in P. frutescens and 10 components in A. asiatica were identified. The inhibitory activity of the fractions, obtained by steam distillation-extraction, was determined by virtue of bioassay on radish. Volatile allelochemicals of the most active fraction, neutral fraction, isolated from P. frutescens contained 9 components. In A. asiatica, 24 volatile allelochemicals were identified.

  • PDF

Comparison of Flavor Compounds in Steamed- and Nonsteamed-Roasted Polygonatum odoratum Roots by Solid-Phase Microextraction (Solid-Phase Microextraction(SPME)을 이용한 둥굴레차의 증자 여부에 따른 향기성분 특성 비교)

  • Park, Nan-Young;Seo, Ji-Hyung;Kim, Young-Hoi;Kwon, Joong-Ho
    • Korean Journal of Food Science and Technology
    • /
    • v.32 no.3
    • /
    • pp.507-512
    • /
    • 2000
  • The headspace flavors of roasted tea, prepared with steamed and nonsteamed polygonatum roots, were absorbed in solid-phase microextraction(SPME) fiber coated with $65\;{\mu}m$ of carbowax/divinylbenzene(CW/DVB) and analysed by GC-MS. The absorption conditions of SPME fiber for equilibrated headspace were selected as $60^{\circ}C$ and 30 min. In a comparison for both samples roasted at $130^{\circ}C$ for 15 min, gas chromatograms showed a similar pattern in overall profiles between steamed and nonsteamed samples before roasting, but some differences were observed in peak characteristics. From 40 separated peaks, 25 compounds were identified with both GC-MS and retention time comparison. The pyrazines including 2,3-dihydro-3,5-dihydroxy-6-methyl-4H-pyran-4-one, 2,5-dimethyl-4-hydroxy-3(2H)-furanone, 2-acetyl-1-pyrroline, etc. were higher in their contents in nonsteamed-roasted sample than steamed-roasted one. In particular, steamed-roasted polygonatum showed higher contents of acetic acid(8.17%) and hexanoic acid(5.43%) than the corresponding compounds of nonsteamed-roasted one, 2.40% and 2.00%.

  • PDF

Evaluation for Volatile Organic Compounds (VOCs) Emitted from Fused Deposition Modeling (FDM) 3D Printing Filaments (FDM 3D프린터 소재에서 방출될 수 있는 휘발성유기화합물 평가)

  • Kim, Sungho;Park, Hae Dong;Chung, Eunkyo
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.32 no.2
    • /
    • pp.153-162
    • /
    • 2022
  • Objectives: Fused deposition modeling (FDM) 3D printer which is one of the material extrusion (MEX) technologies is an additive manufacturing (AM) process. 3D printers have been distributed widely in Korea, particularly in school and office, even at home. Several studies have shown that nanoparticles and volatile organic compounds (VOCs) were emitted from an FDM 3D printing process. The objective of this study was to identify types of chemicals possibly emitted from FDM 3D printing materials such as PLA (polylactic acid), ABS (acrylonitrile butadiene styrene), nylon, PETG (polyethylene terephthalate glycol), PVA (polyvinyl alcohol), PC (polycarbonate) filaments. Methods: 19 FDM 3D printing filaments which have been distributed in Korea were selected and analyzed VOCs emitted of 3D printing materials by headspace gas chromatography mass spectrometry (headspace GC-MS). Subsamples were put into a vial and heated up to 200℃ (500 rpm) during 20 minutes before analyzing FDM 3D printing filaments. Results: In the case of PLA filament, lactide and methyl methacrylate, the monomer components of one, were detected, and the volume ratio ranged 27~93%, 0.5~37% respectively. In the case of ABS filaments, styrene (50.5~59.1%), the monomer components of one, was detected. Several VOCs among acetaldehyde, toluene, ethylbenzene, xylene, etc were detected from each FDM 3D printing filaments. Conclusions: Several VOCs, semi-VOCs were emitted from FDM 3D printing filaments in this study and previous studies. Users were possibly exposed to ones so that we strongly believe that we recommend to install the ventilation system such as a local exhaust ventilation (LEV) when they operate the FDM 3D printers in a workplace.

Removal of residual VOCs in a collection chamber using decompression for analysis of large volatile sample

  • Lee, In-Ho;Byun, Chang Kyu;Eum, Chul Hun;Kim, Taewook;Lee, Sam-Keun
    • Analytical Science and Technology
    • /
    • v.34 no.1
    • /
    • pp.23-35
    • /
    • 2021
  • In order to measure the volatile organic compounds (VOCs) of a sample which is too large to use commercially available chamber, a stainless steel vacuum chamber (VC) (with an internal diameter of 205 mm and a height of 50 mm) was manufactured and the temperature of the chamber was controlled using an oven. After concentrating the volatiles of the sample in the chamber by helium gas, it was made possible to remove residual volatile substances present in the chamber under reduced pressure ((2 ± 1) × 10-2 mmHg). The chamber was connected to a purge & trap (P&T) using a 6 port valve to concentrate the VOCs, which were analyzed by gas chromatography-mass spectrometry (GC-MS) after thermal desorption (VC-P&T-GC-MS). Using toluene, the toluene recovery rate of this device was 85 ± 2 %, reproducibility was 5 ± 2 %, and the detection limit was 0.01 ng L-1. The method of removing VOCs remaining in the chamber with helium and the method of removing those with reduced pressure was compared using Korean drinking water regulation (KDWR) VOC Mix A (5 μL of 100 ㎍ mL-1) and butylated hydroxytoluene (BHT, 2 μL of 500 ㎍ mL-1). In case of using helium, which requires a large amount of gas and time, reduced pressure ((2 ± 1) × 10-2 mmHg) only during the GC-MS running time, could remove VOCs and BHT to less than 0.1 % of the original injection concentration. As a result of analyzing volatile substances using VC-P&T-GC-MS of six types of cell phone case, BHT was detected in four types and quantitatively analyzed. Maintaining the chamber at reduced pressure during the GC-MS analysis time eliminated memory effect and did not affect the next sample analysis. The volatile substances in a cell phone case were also analyzed by dynamic headspace (HT3) and GC-MS, and the results of the analysis were compared with those of VC-P&T-GC-MS. Considering the chamber volume and sample weight, the VC-P&T configuration was able to collect volatile substances more efficiently than the HT3. The VC-P&T-GC-MS system is believed to be useful for VOCs measurement of inhomogeneous large sample or devices used inside clean rooms.

Determination of Aroma Components in Pinus densiflora (Pine Needles) Studied by Using Different Extraction Methods (추출방법에 따른 솔잎의 휘발성 성분 조성 비교)

  • Lee Jae-Gon;Lee Chang-Gook;Baek Shin;Kwon Young-Ju;Jang Hee-Jin;Kwag Jae-Jin;Rhee Moon-Soo;Lee Gae-Ho
    • The Korean Journal of Food And Nutrition
    • /
    • v.19 no.2
    • /
    • pp.161-168
    • /
    • 2006
  • The efficiency of six different extraction methods for the analysis of aroma components from pine needle(P. densiflora) was compared by gas chromatography-mass selective detector(GC-MSD). The six methods were dynamic headspace(DHS), reduced pressure headspace(RPHS), solid-phase microextraction(SPME), simultaneous distillation-extraction(SDE), supercritical fluid extraction(SFE) and pyrolysis distillation extraction(PDE). A total of 65 compounds were identified by using the six different extraction methods. These compounds are classified into six categories in terms of chemical functionality: 25 hydrocarbons, 16 alcohols, 9 carbonyls, 6 esters, 7 acids, and 2 ethers. The aroma compounds having low boiling point were more abundant in DHS, RPHS, and SPME extracts. On the other hand, the aroma compounds having high boiling point were more abundants in SDE, SFE and PDE extracts. The acid compounds were extracted by heat-based extraction methods such as SDE, SFE, PDE, but not by DHS, RPHS and SPME, which used neither solvent nor heat. The oxygenated terpens, hexanal, hexanol, and hexadienal were more abundant in DHS and RPHS extracts, compared with the other methods.