Browse > Article
http://dx.doi.org/10.5806/AST.2021.34.1.23

Removal of residual VOCs in a collection chamber using decompression for analysis of large volatile sample  

Lee, In-Ho (Department of Applied Chemistry, Daejeon University)
Byun, Chang Kyu (Department of Applied Chemistry, Daejeon University)
Eum, Chul Hun (Geochemical Analysis Center, Korea Institute of Geoscience and Mineral Resources)
Kim, Taewook (Department of Civil, Safety and Environmental Engineering, Hankyong National University)
Lee, Sam-Keun (Department of Applied Chemistry, Daejeon University)
Publication Information
Analytical Science and Technology / v.34, no.1, 2021 , pp. 23-35 More about this Journal
Abstract
In order to measure the volatile organic compounds (VOCs) of a sample which is too large to use commercially available chamber, a stainless steel vacuum chamber (VC) (with an internal diameter of 205 mm and a height of 50 mm) was manufactured and the temperature of the chamber was controlled using an oven. After concentrating the volatiles of the sample in the chamber by helium gas, it was made possible to remove residual volatile substances present in the chamber under reduced pressure ((2 ± 1) × 10-2 mmHg). The chamber was connected to a purge & trap (P&T) using a 6 port valve to concentrate the VOCs, which were analyzed by gas chromatography-mass spectrometry (GC-MS) after thermal desorption (VC-P&T-GC-MS). Using toluene, the toluene recovery rate of this device was 85 ± 2 %, reproducibility was 5 ± 2 %, and the detection limit was 0.01 ng L-1. The method of removing VOCs remaining in the chamber with helium and the method of removing those with reduced pressure was compared using Korean drinking water regulation (KDWR) VOC Mix A (5 μL of 100 ㎍ mL-1) and butylated hydroxytoluene (BHT, 2 μL of 500 ㎍ mL-1). In case of using helium, which requires a large amount of gas and time, reduced pressure ((2 ± 1) × 10-2 mmHg) only during the GC-MS running time, could remove VOCs and BHT to less than 0.1 % of the original injection concentration. As a result of analyzing volatile substances using VC-P&T-GC-MS of six types of cell phone case, BHT was detected in four types and quantitatively analyzed. Maintaining the chamber at reduced pressure during the GC-MS analysis time eliminated memory effect and did not affect the next sample analysis. The volatile substances in a cell phone case were also analyzed by dynamic headspace (HT3) and GC-MS, and the results of the analysis were compared with those of VC-P&T-GC-MS. Considering the chamber volume and sample weight, the VC-P&T configuration was able to collect volatile substances more efficiently than the HT3. The VC-P&T-GC-MS system is believed to be useful for VOCs measurement of inhomogeneous large sample or devices used inside clean rooms.
Keywords
large volatile sample; vacuum chamber; residual VOCs; decompression; GC-MS;
Citations & Related Records
연도 인용수 순위
  • Reference
1 IEST-RP-CC031, Institute of Environmental Sciences and Technology, (2004).
2 EPA database, https://www.epa.gov/indoor-air-qualityiaq/technical-overview-volatile-organic-compounds#8.
3 W. Den, H. Bai and Y. Kang, J. Electrochem. Soc., 153(2), G149-G159 (2006).   DOI
4 T. Hattori, AIP Conf. Proc., 550, 275-284 (2001).
5 J. H. Higley and A. J. Michael, Solid State Technology, 39(7), 211-213 (1996).   DOI
6 SEMI Standard F21-95, Semiconductor Equipment and Materials International, Mountain View, CA (1996).
7 C. J. Salim, H. Liu and J. F. Kennedy, Carbohydr. Polym., 81(3), 640-644 (2010).   DOI
8 T. Staaf and C. Ostman, J. Environ. Monit., 7, 883-887 (2005).   DOI
9 A. Sjodin, H. Carlsson, K. Thuresson, S. Sjolin, A. Bergman and C. Ostman, Environ. Sci. Technol., 35, 448-454 (2001).   DOI
10 M. Garcia, I. Rodriguez and R. Cela, Anal. Chim. Acta, 590, 17-25 (2007).   DOI
11 O. B. Jonsson and U. L. Nilsson, Anal. Bioanal. Chem., 377, 182-188 (2003).   DOI
12 H. Carlsson, U. Nilsson, G. Becker and C. Ostman, Environ. Sci. Technol., 31, 2931-2936 (1997).   DOI
13 H. Carlsson, U. Nilsson and C. Ostman, Environ. Sci. Technol., 34, 3885-3889 (2000).   DOI
14 M. Tamaoki, K. Nishiki, A. Shimazaki, Y. Sasaki and S. Yanagi, Proceedings of the Advanced Semiconductor Manufacturing Conference and Workshop, Cambridge, MA, 322-326 (1995).
15 C. K. Yang, H. S. Cha, S. J. Yang, J. H. Kang, J. H. Ahn and K. S. Nam, 27th International Symposium on Photomask Technology, Monterey, CA, 67301D (2007).
16 Y. Kang, W. Den, H. Bai and F.-H. Ko, J. Chromatogr. A, 1070, 137-145 (2005).   DOI
17 C. J. Salim, H. Liu and J. F. Kennedy, Carbohydr. Polym., 81(3), 640-644 (2010).   DOI
18 M. Tamaoki, K. Nishiki, A. Shimazaki, Y. Sasaki and S. Yanagi, The effect of airborne contaminants in the cleanroom for ULSI manufacturing process, in: Proceedings of the Advanced Semiconductor Manufacturing Conference and Workshop, 322-326 (1995).
19 A. Marklund, B. Andersson and P. Haglund, Chemosphere, 53(9), 1137-1146 (2003).   DOI
20 A. Marklund, B. Andersson and P. Haglund, Chemosphere, 53(9), 1137-1146 (2003).   DOI
21 N. B. Rana, P. Raghu, E. Sharo and F. Shadman, Appl. Surf. Sci., 205, 160-175 (2003).   DOI
22 H. P. Witschi, Food Chem. Toxicol., 24(10-11), 1127-1130 (1986).   DOI
23 G. Wang, Y. Li, N. Guo, C. Han, D. Liu, D. Li, M. Yang, Y. Peng, Y. Liu, K. Yu and C. Wang, J. Pharm. Biomed. Anal., 167(15) , 30-37 (2019).   DOI
24 T. Otake, J. Yoshinaga and Y. Yanagishiwa, Environ. Sci. Technol., 35, 3099-3102 (2001).   DOI
25 S. Tlili, N. Hayeck, S. Gligorovski and H. Wortham, Ind. Eng. Chem. Res., 51, 14665-14672 (2012).   DOI
26 L. I. Nieto-Gligorovski, S. Gligorovski, S. Tlili, X. Fu, B. Temime-Roussel and H. Wortham, J. Electrochem. Soc., 156(4), H290-H297 (2009).
27 S. M. Thornburg, D. C. McIntyre, A. Y. Liang, S. F. Bender, and R. D. Lujan, Technology Transfer Report 9402208A-XFR, Sematech (1994).
28 P. Aragon, J. Atienza, and M. D. Climent, Crit. Rev. Anal. Chem., 30, 121-151 (2000).   DOI
29 N. Hayeck, S. Gligorovski, I. Poulet and H. Wortham, Talanta, 122, 63-69 (2014).   DOI
30 H. Toda, K. Sako, Y. Yagome and T. Nakamura, Anal. Chim. Acta, 519, 213-218 (2004).   DOI
31 P. A. Clausen, V. Hansen, L. Gunnarsen, A. Afshari and P. Wolkoff, Environ. Sci. Technol., 38, 2531-2537 (2004).   DOI
32 A. R. Mastrogiacomo, E. Pierini and L. Sampaolo, Chromatographia, 41, 599-604 (1995).   DOI
33 S. Wi, S. J. Chang, S.-G. Jeong, J. Lee, T. Kim, K.-W. Park, D. R. Lee and S. Kim, Materials, 10, 853, 1-11; doi:10.3390/ma10080853 (2017).   DOI
34 H. K. Yu, J. C. Park and E.-K. Rhee, J. Architect. Institute of Korea Planning and Design, 21(7), 141-148 (2005).
35 N. S. Chary, A. R. Fernandez-Alba, Trends Anal. Chem., 32, 60-75 (2012).   DOI
36 H. Guo, F. Murray and S. Wilkinson, J. Air & Waste Manage. Assoc. 50, 199-206 (2010).
37 H. Choi, J. C. Choi, I.-A. Bae, S.-J. Park and M. K. Kim, J. Food. Hyg. Saf., 32(5), 424-433 (2017).   DOI
38 A. M. Malkinson, Cancer Investig., 3(2), 209-211 (1985).   DOI