• Title/Summary/Keyword: hazardous environment

Search Result 785, Processing Time 0.03 seconds

Relationship between hazardous risk factors and subjective health conditions in the working environment of dental hygienists (치과위생사의 작업환경 유해위험요인과 주관적 건강상태와의 관계)

  • Hyoung-Joo, Kim;Jun-Yeong, Kwon;Hee-Jung, Lim
    • Journal of Korean Dental Hygiene Science
    • /
    • v.5 no.2
    • /
    • pp.1-11
    • /
    • 2022
  • Background: This study was aimed at investigating the type of work of dental hygienists and identifying factors affecting the subjective health status according to hazardous risk factors in the working environment. Methods: From May 15 to 31, 2019, we surveyed 411 dental hygienists working at dental hospitals in the metropolitan area. SPSS 25.0 was used to perform the frequency analysis, t-test, one-way analysis of variance, Pearson's correlation analysis, and multiple regression analysis. Results: Regarding factors related to the degree of exposure to hazardous risk factors in the work environment and subjective health status, the more exposed the ergonomic (p<0.05) and psychological (p< 0.001)factors, the worse is the subjective health status. Conclusion: The results of this study suggest that the working environment should be improved for dental hygienists such that they can perform their duties in a safe environment.

Study on the Characteristics of Carcinogenic Pollutant Emissions and Cancer Incidence Rates in Korea (국내 발암물질 배출량 특성과 암발생 추이에 관한 연구)

  • Im, JiYoung;Kim, Bokyeong;Kim, Hyunji;Yun, Jeonghyeon;Heo, HwaJin;Lee, JiHo;Lee, SangMok;Lee, ChungSoo
    • Journal of Environmental Health Sciences
    • /
    • v.44 no.2
    • /
    • pp.160-168
    • /
    • 2018
  • Objectives: The purposes of the study were to investigate hazardous pollutant emissions changes among group 1 carcinogens. The emissions characteristics were compared with national cancer registration statistics. Methods: A survey of group 1 carcinogen hazardous pollutant emissions (trichloroethylene, benzene, vinyl chloride, formaldehyde, 1,3-butadiene, ethylene oxide, chromium and its compounds, 3,3'-dichloro-4,4-diaminodiphenylmethane, chloromethyl methyl ether, arsenic and its compounds, cadmium and its compounds, o-toluidine) was conducted through a homepage for 2001-2015. The emission of hazardous chemicals and the cancer trend analysis for 2001-2015 were performed using the Korean statistical information service through its homepage as a reference. Results: Emissions of more than 95% of the substances listed as group 1 carcinogens over the last five years were made up of trichloroethylene, benzene, vinyl chloride, formaldehyde, 1,3-butadiene, and ethylene oxide. As a result of the comparison of emission results and cancer incidence rates, carcinogen pollutant emissions showed a tendency to decrease continuously. In addition, the incidence of cancer tended to increase, but showed a tendency to decrease from 2012. Conclusion: The results indicate hazardous pollutant emissions have continued to increase. However, no association between emissions and health effects was shown and more research is needed.

Antimicrobial Activity against Food-hazardous Microorganisms, Dermatophytes, and Pytopathogens and Antioxidative Activity of Sancho Oil (식품위해성균, 피부사상균 및 식물성 병원균에 대한 산초유의 항균 활성 및 항산화 활성)

  • Kim, Hak Gon;Kang, Seung Mi;Yong, Seong Hyeon;Seol, Yu Won;Choi, Eun Ji;Park, Jun Ho;Yu, Chan Yeol;Solomon, Tamirat;Choi, Myung Suk
    • Korean Journal of Medicinal Crop Science
    • /
    • v.28 no.1
    • /
    • pp.38-46
    • /
    • 2020
  • Background: Although Sancho (Zanthoxylum schinifolium Siebold & Zucc) oil has traditionally been used for its antibiotics properties, there is currently a lack of scientific evidence regarding its biological activities. In this study, we investigated the antimicrobial and antioxidant activities of Sancho oil against food-hazardous microorganisms, phytopathogens, and dermatophytes. Methods and Results: We investiated the antimicrobial activity of Sancho oil against 11 food-hazardous microorganisms, nine phytopathogens, and six dermatophytes. The Sancho oil was found to show the strongest antibacterial activity against Shigella flexneri and Listeria spp. Sancho oil also showed high antifungal activity against plant pathogens, particularly Fusarium oxysporum, and showed antimicrobial activity against dermatophytes such as Trichophyton rubrum, Microsporum canis and Candida albicans. The antioxidant activity of Sancho oil was measured using the DPPH method, and was found to be stronger than that of unrefined oil. Moreover, this activity increased with increasing oil concentration. Conclusions: We found that Sancho oil showed differing antimicrobial activities against food-hazardous microorganisms, dermatophytes, and plant pathogens. The antimicrobial activity spectrum of Sancho oil was not broad and varied among microbial strains. On the basis of our findings, we consider that Sancho oil could be used an antibacterial material for food-borne S. flexneri and Listeria spp., a biopesticide for Fusarium spp., and a treatment for dermatophytes such as T. rubrum.

The Development of Hazardous Waste Compact Dump incinerator for Low Emissions (저공해 compact 유해폐기물 dump 소각기 개발)

  • 전영남;채종성;정오진
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.16 no.6
    • /
    • pp.653-663
    • /
    • 2000
  • A lot of hazardous wastes are discharged as by-products of working process by industrial development. Hazardous wastes is physical characteristics of difficult destruction at hight temperature. Numerical simulation and combustion experiment performed of dump incinerator for hazardous waste incineration. For the numerical simulation, the SIMPLEST algorithm was used to ensure rapid converge A K-$\varepsilon$ model was incorporate for the enclosure of turbulence flow. Combustion model was used by ESCRS (extended simple chemically reacting system) model available of CHEMKIN thermodynamic data for the source term of species conservation equation or energy equation. Radiation model is used by six flux model. A parametric screening studies was carried out through numerical simulation and experiment. Residence time and concentration in the incinerator was strongly dependent on the parameters of mixture velocity, mixture equilibrium ratio, surrogate velocity and surrogate equilibrium ratio.

  • PDF

A Study on the Hazardous Metal Content of Herbal Medicines in the Daegu Area (대구지역 유통 한약재의 유해금속 함량에 관한 연구)

  • Lee, Jin hee;Kim, Ji Yeon;Park, Sang Gyu;Lee, Jae Ho;Yoon, Jong Ho;Han, Gi Dong
    • Journal of Environmental Health Sciences
    • /
    • v.43 no.4
    • /
    • pp.257-266
    • /
    • 2017
  • Objectives: The hazardous metals content of medicinal herbs distributed in the Daegu area was investigated, and the place of origin and the content of herbicides and medicinal components were studied. Methods: An analysis of hazardous metals content (10 types) was carried out on 164 samples of 99 types of herbal medicines. Among the total samples, 45 were domestic and 119 were imported. Hg was analyzed by the amalgamation method. Other hazardous metals content (nine types) was digested using the microwave method and measured by inductively coupled plasma optical emission spectrometry (ICP-OES). Results: The mean values of the hazardous metals content in the herbal medicines were Pb 1.0833 mg/kg, As 0.0136 mg/kg, Cd 0.0840 mg/kg, Cr 3.7120 mg/kg, Cu 4.2666 mg/kg, Mn 40.080 mg/kg, Ni 1.4330 mg/kg, Sb 0.1053 mg/kg, Al 202.64 mg/kg and Hg 0.0062 mg/kg. Three of the samples violated the Ministry of Food and Drug Safety (MFDS) regulatory guidance on cadmium (less than 0.3 mg/kg). The measured values of heavy metals (Pb, As, Cd, Hg) showed levels below the recommended levels for herbal medicines in MFDS regulatory guidance. In the comparison of domestic samples with imported herbal medicines, it was found that one domestic and two imported samples surpassed the maximum residue limits for cadmium. The median values of the hazardous metals detected in the three medicinal parts of the root, leaf (branch), and flower (seed and fruit) were as follows. Cr, Ni, Sb and Al were highly detected in roots, Pb, Cd, Mn, Hg in leafs (branch), and As, Cu in flowers (seed and fruit). Conclusion: There were various kinds of hazardous metals which were detected at high levels according to the place of origin of the medicinal herb and the parts the plant. For hazardous metals for which no acceptance criteria have been established, safety standards should be further studied and managed to ensure the safety of herbal medicines.