• Title/Summary/Keyword: harvesting efficiency

Search Result 344, Processing Time 0.028 seconds

Energy Efficiency of Decoupled RF Energy Harvesting Networks in Various User Distribution Environments (다양한 사용자 분포 환경에서의 비결합 무선 에너지 하베스팅 네트워크의 에너지 효율)

  • Hwang, Yu Min;Sun, Young Ghyu;Shin, Yoan;Kim, Dong In;Kim, Jin Young
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.17 no.4
    • /
    • pp.159-167
    • /
    • 2018
  • In this paper, we propose an algorithm to optimize energy efficiency in a multi-user decoupled RF energy harvesting network and experiment on the trend of energy efficiency change assuming users' various geographical distribution scenarios. In the RF energy harvesting network where both wireless data transmission and RF energy harvesting are simultaneously performed, the energy efficiency is a key indicator of network performance, and it is necessary to investigate how various factors can affect the energy efficiency. In order to increase energy efficiency effectively, we can confirm that users' distributions are important factors in the RF energy harvesting network from the simulation results.

Development of Apple Harvesting Robot(I) - Development of Robot Hand for Apple Harvesting - (사과 수확 로봇의 핸드 개발(I) - 사과 수확용 로봇의 핸드 개발 -)

  • 장익주;김태한;권기영
    • Journal of Biosystems Engineering
    • /
    • v.22 no.4
    • /
    • pp.411-420
    • /
    • 1997
  • The mechanization efficiency using high ability machines such as tractors or combines in a paddy field rice farm is high. Mechanization in harvesting fruits and vegetables is difficult, because they are easy to be damaged. Therefore, Advanced techniques for careful handling fruits and vegetables are necessary in automation and robotization. An apple harvesting robot must have a recognition device to detect the positioning of fruit, manipulators which function like human arms, and hand to take off the fruit. This study is related to the development of a rotatic hand as the first stage in developing the apple harvesting robot. The results are summarized as follows. 1. It was found that a hand that was eccentric in rotatory motion, was better than a hand of semicircular up-and-down motion in harvesting efficiency. 2. The hand was developed to control changes in grasp forces by using tape-type switch sensor which was attatched to fingers' inside. 3. Initial finger positioning was set up to control accurate harvesting by using a tow step fingering position. 4. This study showed the possibility of apple harvesting using the developed robot hand.

  • PDF

Optimal Time Scheduling Algorithm for Decoupled RF Energy Harvesting Networks (비결합 무선 에너지 하비스팅 네트워크를 위한 최적 시간 스케줄링 알고리즘)

  • Jung, Jun Hee;Hwang, Yu Min;Kim, Jin Young
    • Journal of Satellite, Information and Communications
    • /
    • v.11 no.2
    • /
    • pp.55-59
    • /
    • 2016
  • Conventional RF energy harvesting systems can harvest energy and decode information from same source as an Hybirid-AP (H-AP). However, harvesting efficiency is seriously dependent on distance between users and H-AP. Therefore, in this paper, we proposed a transmission model for RF harvesting consisting of information and power source separately called Decoupled RF Energy harvesting networks. Main purpose of this paper is to maximize energy efficiency under various constraints of transmit power from H-AP and power beacon (PB), minimum quality of service and quality of harvested power of each users. To measure proposed model's performance, we proposed optimal time scheduling algorithms for energy efficiency (EE) maximization using Lagrangian dual decomposition theory that locally maximizes the EE by obtaining suboptimal values of three arguments : transmit power of H-AP, transmit power of PB, frame splitting factor. Experiment results show that the proposed energy-efficient algorithms converge within a few iterations with its optimality and greatly improve the EE compared to that of baseline schemes.

Efficiency of methyl-esterified eggshell membrane biomaterials for intensified microalgae harvesting

  • Choi, Hee-Jeong
    • Environmental Engineering Research
    • /
    • v.22 no.4
    • /
    • pp.356-362
    • /
    • 2017
  • This study investigates the use of methyl-esterified eggshell membranes (MESM) for the harvesting of microalgae species under various conditions. Eggshell membranes were esterified with HCl to impact polycationic characteristics. After methyl esterification, the negative surface charge property of eggshell membrane was changed from negative to positive for all pH values to improve microalgae sorption capacity. The harvesting efficiency of microalgae by MESM reached 78-99% for all pH ranges evaluated. In addition, a 150 mesh particle size and $10mg\;L^{-1}$ MESM dose were found to yield up to 98% microalgae harvesting. These results indicate that the high cationic charge of MESM strongly adsorbs the negatively-charged microalgae. MESM is biocompatible and can be applied to the harvest of microalgae.

A Study on Mechanized System of Barley Harvesting (보리의 기계수확체계(機械收穫體系) 시험(試驗))

  • Kim, Jeung Soo;Lee, Dong Hyeon;Baek, Poong Ki;Jeung, Doo Ho
    • Journal of Biosystems Engineering
    • /
    • v.7 no.2
    • /
    • pp.36-44
    • /
    • 1983
  • Farm population was rapidly decreasing due to shift of the people from farm sector to the non-farm sector caused by the economic growth of the country. Especially, a great shortage of farm labor in busy farming period in June and October is becoming a serious problem in maintaining or promoting land productivity. The peak of labor requirement in summer is caused by rice transplanting and barley harvesting. In order to reduce the restrictions imposed on farm management by the concurrence of labor requirement and the lack of labor, the experimental study for mechanization of barley harvesting has been carried out in the fields. 1. The machines for barley harvesting were knap-sack type reapers, windrow reaper (power tiller attachment), binder and combine. The order of higher efficiency of machine for barley harvesting was combine, binder, windrow reaper (WR), knapsack type reaper 1(KSTR1), and knap sack type reaper 2(KSTR2; mist and duster attachment). 2. The ratio of grain loss for the manual, binder, and combine plot was about four percent of total field yield. 3. The total yield of barley in 35 days and 40 days harvesting after heading were 514 kg and 507kg per 10 ares respectively. The yield of 35 days-plot was higher than other experimental plots. 4. The lowest yield was recorded in 30 days-plot due to the large quantity of immatured grains and having lighter 1000-grain weight. The ratio of immatured grains was 2.66 percent and 1000-grain weight was 29.4 grams. 5. The total harvesting cost of the windrow reaper was 10,178 won per 10 ares. It was the lowest value compared to other machines. The next were combine, binder, KSTR1, KSTR2, and manual in sequence. As a result, the optimum time of barley harvesting for mechanization was 35-40 days after heading. Combine, binder, and windrow reaper were recommended as the suitable machines for barley harvesting in the work efficiency. However, in total harvesting cost, the windrow reaper was the most promising machine for barley harvesting.

  • PDF

Electromagnetic energy harvesting from structural vibrations during earthquakes

  • Shen, Wenai;Zhu, Songye;Zhu, Hongping;Xu, You-lin
    • Smart Structures and Systems
    • /
    • v.18 no.3
    • /
    • pp.449-470
    • /
    • 2016
  • Energy harvesting is an emerging technique that extracts energy from surrounding environments to power low-power devices. For example, it can potentially provide sustainable energy for wireless sensing networks (WSNs) or structural control systems in civil engineering applications. This paper presents a comprehensive study on harvesting energy from earthquake-induced structural vibrations, which is typically of low frequency, to power WSNs. A macroscale pendulum-type electromagnetic harvester (MPEH) is proposed, analyzed and experimentally validated. The presented predictive model describes output power dependence with mass, efficiency and the power spectral density of base acceleration, providing a simple tool to estimate harvested energy. A series of shaking table tests in which a single-storey steel frame model equipped with a MPEH has been carried out under earthquake excitations. Three types of energy harvesting circuits, namely, a resistor circuit, a standard energy harvesting circuit (SEHC) and a voltage-mode controlled buck-boost converter were used for comparative study. In ideal cases, i.e., resistor circuit cases, the maximum electric energy of 8.72 J was harvested with the efficiency of 35.3%. In practical cases, the maximum electric energy of 4.67 J was extracted via the buck-boost converter under the same conditions. The predictive model on output power and harvested energy has been validated by the test data.

An Input-Powered High-Efficiency Interface Circuit with Zero Standby Power in Energy Harvesting Systems

  • Li, Yani;Zhu, Zhangming;Yang, Yintang;Zhang, Chaolin
    • Journal of Power Electronics
    • /
    • v.15 no.4
    • /
    • pp.1131-1138
    • /
    • 2015
  • This study presents an input-powered high-efficiency interface circuit for energy harvesting systems, and introduces a zero standby power design to reduce power consumption significantly while removing the external power supply. This interface circuit is composed of two stages. The first stage voltage doubler uses a positive feedback control loop to improve considerably the conversion speed and efficiency, and boost the output voltage. The second stage active diode adopts a common-grid operational amplifier (op-amp) to remove the influence of offset voltage in the traditional comparator, which eliminates leakage current and broadens bandwidth with low power consumption. The system supplies itself with the harvested energy, which enables it to enter the zero standby mode near the zero crossing points of the input current. Thereafter, high system efficiency and stability are achieved, which saves power consumption. The validity and feasibility of this design is verified by the simulation results based on the 65 nm CMOS process. The minimum input voltage is down to 0.3 V, the maximum voltage efficiency is 99.6% with a DC output current of 75.6 μA, the maximum power efficiency is 98.2% with a DC output current of 40.4 μA, and the maximum output power is 60.48 μW. The power loss of the entire interface circuit is only 18.65 μW, among which, the op-amp consumes only 2.65 μW.

Enhanced Light Harvesting from F$\ddot{o}$rst-type resonance Energy Transfer in the Quasi-Solid State Dye-Sensitized Solar Cells (F$\ddot{o}$rst energy transfer 를 적용한 준고체 DSSC 의 효율향상)

  • Cheon, Jong Hun;Lee, Jeong Gwan;Yang, Hyeon Seok;Kim, Jae Hong
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2011.05a
    • /
    • pp.117.1-117.1
    • /
    • 2011
  • We have demonstrated Forst-type resonance energy transfer (FRET) in the quasi-solid type dye-sensitized solar cells between organic fluorescence materials as an energy donor doped in polymeric gel electrolyte and ruthenium complex as an energy acceptor on surface of $TiO_2$. The strong spectral overlap of emission/absorption of energy donor and acceptor is required to get high FRET efficiency. The judicious choice of energy donor allows the enhancement of light harvesting characters of energy acceptor in quasi-solid dye sensitized solar cells which increase the power conversion efficiency. The enhanced light harvesting effect by the judicious choice/design of the fluorescence materials and sensitizing dyes permits the enhancement of photovoltaic performance of DSSC.

  • PDF

Development of Macro-Porous Silicon Based Dye-Sensitized Solar Cells with Improved Light Trapping

  • Aliaghayee, Mehdi;Fard, Hassan Ghafoori;Zandi, Ashkan
    • Journal of Electrochemical Science and Technology
    • /
    • v.7 no.3
    • /
    • pp.218-227
    • /
    • 2016
  • The light harvesting efficiency is counted as an important factor in the power conversion efficiency of DSSCs. There are two measures to improve this parameter, including enhancing the dye-loading capacity and increasing the light trapping in the photoanode structure. In this paper, these tasks are addressed by introducing a macro-porous silicon (PSi) substrate as photoanode. The effects of the novel photoanode structure on the DSSC performance have been investigated by using energy dispersive X-ray spectroscopy, photocurrent-voltage, UV-visible spectroscopy, reflectance spectroscopy, and electrochemical impedance spectroscopy measurements. The results indicated that bigger porosity percentage of the PSi structure improved the both anti-reflective/light-trapping and dye-loading capacity properties. PSi based DSSCs own higher power conversion efficiency due to its remarkable higher photocurrent, open circuit voltage, and fill factor. Percent porosity of 64%, PSi(III), resulted in nearly 50 percent increment in power conversion efficiency compared with conventional DSSC. This paper showed that PSi can be a good candidate for the improvement of light harvesting efficiency in DSSCs. Furthermore, this study can be considered a valuable reference for more investigations in the design of multifunctional devices which will profit from integrated on-chip solar power.

Power Control in RF Energy Harvesting Networks (무선 에너지 하비스팅 네트워크에서의 전력 제어 기법)

  • Hwang, Yu Min;Shin, Dong Soo;Kim, Jin Young
    • Journal of Satellite, Information and Communications
    • /
    • v.12 no.2
    • /
    • pp.51-55
    • /
    • 2017
  • This paper aims to maximize the energy harvesting rate and channel capacity in RF-energy harvesting networks (RF-EHNs) under the constraints of maximum transmit power and minimum quality of service (QoS) in terms of rate capacity for each user. We study a multi-user RF-EHN with frequency division multiple access (FDMA) in a Rayleigh channel. An access point (AP) simultaneously transmitting wireless information and power in the RF-EHN serves a subset of active users which have a power-splitting antenna. To gauge the network performance, we define energy efficiency (EE) and propose an optimization solution for maximizing EE with Lagrangian dual decomposition theory. In simulation results, we confirm that the EE is effectively maximized by the proposed solution with satisfying the given constraints.