• Title/Summary/Keyword: harmonic oscillator

Search Result 175, Processing Time 0.032 seconds

Phased Array Behavior of the Coupling of the Millimeter Wave Second Harmonic Oscillator (밀리미터파 대역 제2고조파 발진기 결합계의 위상차 배열 동작)

  • Choi, Young-Kyu;Kim, Gi-Rae
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.64 no.3
    • /
    • pp.438-444
    • /
    • 2015
  • A new approach to the active phased arrays for the second harmonic generation is presented. Phase variation between the second harmonic oscillators by the mutual synchronization is analyzed theoretically. In this coupling, the active antenna consists of the FET oscillator which plays two roles in fundamental oscillation and frequency multiplying, and the patch antenna resonated at the second harmonic frequency. The radiated second harmonic wave was scanned by varying the free-running oscillation frequencies of the active antennas. In the experiment using the 2-elements array and the 4-elements array, the radiated beam of the second harmonic wave was scanned more widely compared with the case of the fundamental wave radiation.

Rabi Oscillation between States of a Coupled Harmonic Oscillator

  • Park, Tae-Jun
    • Bulletin of the Korean Chemical Society
    • /
    • v.24 no.2
    • /
    • pp.219-221
    • /
    • 2003
  • Rabi oscillation between bound states of a single potential is well known. However the corresponding formula between the states of two different potentials has not been obtained yet. In this work, we derive Rabi formula between the states of a coupled harmonic oscillator which may be used as a simple model for the electron transfer. The expression is similar to typical Rabi formula for a single potential. This result may be used to describe transitions between coupled diabatic potential curves.

INVESTIGATION OF THE COHERENT WAVE PACKET FOR A TIME-DEPENDENT DAMPED HARMONIC OSCILLATOR

  • CHOI JEONG RYEOL;CHOI S. S.
    • Journal of applied mathematics & informatics
    • /
    • v.17 no.1_2_3
    • /
    • pp.495-508
    • /
    • 2005
  • We investigated both classical and quantum properties of a damped harmonic oscillator with a time-variable elastic coefficient using invariant operator method. We acquired the energy eigenvalues, uncertainties and probability densities for several types of wave packet. The probability density corresponding to the displaced minimum wave packet expressed in terms of the time-dependent Gaussian function. The displaced minimum wave packet not only be attenuated but also oscillates about x = 0. We confirmed that there exist correspondence between quantum and classical behaviors for the time-dependent damped harmonic oscillator.

A Study on the downconverter Using Sub-Harmonic Mixer for Point to Point System Applications (Sub-Harmonic 혼합기를 이용한 점대점 시스템용 하향 변환기에 관한 연구)

  • Min Jun-Ki;Kim Hyun-Jin;Kim Yong-Hwan;Yoo Hyung-Soo;Yun Ho-Seok;Lee Keun-Tae;Hong Ui-Seok
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.30 no.10A
    • /
    • pp.958-964
    • /
    • 2005
  • In this thesis, the matching network at the local oscillator port of the sub-harmonic mixer is optimized for reducing the conversion loss. A downconverter for point to point system applications is designed and fabricated using the such sub-harmonic mixer. The sub-harmonic mixer achieved the conversion loss of 11.8 dB at the 12 dBm input power of the local oscillator and the isolation of less than -40 dB. The downconverter achieved the IF output power flatness of 2 dB and the total noise figure of 5.9 dB.

A CMOS Frequency Synthesizer for 5~6 GHz UNII-Band Sub-Harmonic Direct-Conversion Receiver

  • Jeong, Chan-Young;Yoo, Chang-Sik
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.9 no.3
    • /
    • pp.153-159
    • /
    • 2009
  • A CMOS frequency synthesizer for $5{\sim}6$ GHz UNII-band sub-harmonic direct-conversion receiver has been developed. For quadrature down-conversion with sub-harmonic mixing, octa-phase local oscillator (LO) signals are generated by an integer-N type phase-locked loop (PLL) frequency synthesizer. The complex timing issue of feedback divider of the PLL with large division ratio is solved by using multimodulus prescaler. Phase noise of the local oscillator signal is improved by employing the ring-type LC-tank oscillator and switching its tail current source. Implemented in a $0.18{\mu}m$ CMOS technology, the phase noise of the LO signal is lower than -80 dBc/Hz and -113 dBc/Hz at 100 kHz and 1MHz offset, respect-tively. The measured reference spur is lower than -70 dBc and the power consumption is 40 m W from a 1.8 V supply voltage.

Canonical Transformations for Time-Dependent Harmonic Oscillators

  • Park, Tae-Jun
    • Bulletin of the Korean Chemical Society
    • /
    • v.25 no.2
    • /
    • pp.285-288
    • /
    • 2004
  • A canonical transformation changes variables such as coordinates and momenta to new variables preserving either the Poisson bracket or the commutation relations depending on whether the problem is classical or quantal respectively. Classically canonical transformations are well established as a powerful tool for solving differential equations. Quantum canonical transformations have been defined and used relatively recently because of the non-commutativeness of the quantum variables. Three elementary canonical transformations and their composite transformations have quantum implementations. Quantum canonical transformations have been mostly used in time-independent Schrodinger equations and a harmonic oscillator with time-dependent angular frequency is probably the only time-dependent problem solved by these transformations. In this work, we apply quantum canonical transformations to a harmonic oscillator in which both angular frequency and equilibrium position are time-dependent.

A Co-design Study of Filters and Oscillator for Low Phase Noise and High Harmonic Rejection

  • Zhang, Bing;Zhang, Wenmei;Ma, Runbo;Zhang, Xiaowei;Mao, Junfa
    • ETRI Journal
    • /
    • v.30 no.2
    • /
    • pp.344-346
    • /
    • 2008
  • In this paper, we present a novel oscillator (OSC) design. Bandpass filters, which can suppress harmonics, are incorporated into a co-design with an OSC to improve the OSC phase noise and harmonic rejection. The proposed OSC/bandpass filter co-design achieves a phase noise of -130.1 dBc/Hz/600 kHz and harmonic rejection of 37.94 dB and 40.85 dB for the second and third harmonics, respectively, as compared to results achieved by the OSC before co-design of -101.6 dBc/Hz/600 kHz and 21.28 dB and 19.68 dB. Good agreement between the measured and simulated results is achieved.

  • PDF

5.8 ㎓ Band Frequency Synthesizer using Harmonic Oscillation (하모닉 발진을 이용한 5.8 ㎓ 대역 주파수 합성기)

  • 최종원;신금식;이문규
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.15 no.4
    • /
    • pp.421-427
    • /
    • 2004
  • A low cost solution employing harmonic oscillation to the frequency synthesizer at 5.8 ㎓ is proposed. The proposed frequency synthesizer is composed of 2.9 ㎓ PLL chip, 2.9 ㎓ oscillator, and 5.8 ㎓ buffer amplifier The measured data shows a frequency Outing range of 290 ㎒, ranging from 5.65 to 5.94 ㎓ about 0.5 ㏈m of output power, and a phase noise of -107.67 ㏈c/㎐ at the 100 ㎑ offset frequency. All spurious signals including fundamental oscillation power(2.9 ㎓) are suppressed at least 15 ㏈c than the desired second harmonic signal.

Novel Phase Noise Reduction Method for CPW-Based Microwave Oscillator Circuit Utilizing a Compact Planar Helical Resonator

  • Hwang, Cheol-Gyu;Myung, Noh-Hoon
    • ETRI Journal
    • /
    • v.28 no.4
    • /
    • pp.529-532
    • /
    • 2006
  • This letter describes a compact printed helical resonator and its application to a microwave oscillator circuit implemented in coplanar waveguide (CPW) technology. The high quality (Q)-factor and spurious-free characteristic of the resonator contribute to the phase noise reduction and the harmonic suppression of the resulting oscillator circuit, respectively. The designed resonator showed a loaded Q-factor of 180 in a chip area of only 40% of the corresponding miniaturized hairpin resonator without any spurious resonances. The fully planar oscillator incorporated with this resonator showed an additional phase noise reduction of 10.5 dB at a 1 MHz offset and a second harmonic suppression enhancement of 6 dB when compared to those of a conventional CPW oscillator without the planar helical resonator structure.

  • PDF

Design of Parallel Feedback Dielectric Resonator Oscillator(DRO) for the Suppression of the Harmonic (고조파 억압 특성을 개선한 병렬 궤환형 유전체 공진기 발진기 설계)

  • Ko, Jung-Pil;Lee, Kun-Joon;Kim, Young-Sik
    • Proceedings of the Korea Electromagnetic Engineering Society Conference
    • /
    • 2003.11a
    • /
    • pp.145-149
    • /
    • 2003
  • The parallel feedback dielectric resonator oscillator (DRO) which is applicable to satellite communications and broadcasting has been investigated. In the design of oscillator, the phase noise is important parameter. In this paper, The proposed oscillator has good phase noise level because it suppressed harmonics. Measurement show the fabricated oscillator is output power of about 9 dBm at fundamental frequency of 12.0 GHz and fundamental frequency suppression of -47.5 dBc. The phase noise level is about -110 dBc/Hz at 100 KHz offset frequency.

  • PDF